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.- AFOSR Grant Nr. AFOSR-862157

Annual Technical Report

Period: May, 1986 - November, 1987

"Calculated Unsteady Aerodynamics of Wings"

J.E. McCune
Masssachusetts Institute of Technology

Department of Aeronautics and Astronautics

Abstract ;A
Progress is reported for the contract period covering the past 18 months.
Substantial advances in the analysis of the large-amplitude unsteady aerodynamics
of wings have been achieved .and are summarized in the attached papers. " Special
focus has been placed on developing techniques for describing the exact non-linear
convection, deformation, and roll-up of the vorticity wakes above and behind
active wing surfaces. Using a combination of analytic and computer-interactive
methods, new insights and more exact aerodynamic performance results have been
generated. The effects of dissipative internal "cores" in the overall 3D wake
structures above deltas have been 2nalyzed in the slendeg}wing limit. New paths
for further computer-assisted advances, including improved understanding of
wing-wake interaction in severe maneuver, vortex core formation and break-up,
and aerodynamic history effects have been charted. 1=+ - 7o vo -

t

Statement of Progress

The papers attached summarize as carefully as we are able the sequential
aspects of the progress made during the above contract period. In addition to
these three papers, two key Master of Science thesis reports (see attached list)
have proved to be major contributors to our understanding of wing aerodynamics
involving both large-scale unsteady motion and viscous-related phenomena such
as leading-edge separation, bubble formation and reattachment and vortex core
evolution.

In paper 1 "Nonlinear Aerodynamics of Two-Dimensional Airfoils in Severe
Maneuver! (Scott/McCune), advanced computer-interactive techniques for
studying large-amplitude unsteady wake motion behind host airfoils is
described. The nonlinear generalization of the classical Wagner equation
is included.
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In paper 2 "interactive Aerodynamics of Wings in Severe Maneuver) (McCune,
Colorado Springs), analysis of exact nonlinear unsteady wake convection
over slender delta wings in severe maneuver is described. Application of
paper 1 to that problem is detailed.

In paper 3 "Slender Wing Theory Including Regions of Embedded Total Pressure
Loss" _(McCune, Tavares, Lee, Weissbein), self-consistent wake development over
slender wings including the development of dissipative, low~total-pressure
core regions is described. Viscous related criteria for the sizing and
evolution of core size shape and intensity are discussed. The importance

of the "history" effect of wake development on wing performance is pointed
out.

\) . . A
List of Publications Prepared During Subject Period

1. Scott, Matthew T., J.E. McCune, "Nonlinear Aerodynamics of Two~Dimensional
Airfoils in Severe Maneuver'", AIAA Paper Nr. 88-0129, AIAA 26th Aerospace
Sciences Meeting, Reno NV, Jan., 1988. Attached.

2. McCune, J.E., "Interactive Aerodynamics of Wings in Severe Maneuver."
To be included in Proceedings of Workshop II on Unsteady Flow, United
States Air Force Academy, July 28-30, 1987. To be published. Attached.

3. McCune, J.E., T.S. Tavares, N.K.W. Lee, and D. Weissbein, "Slender Wing

Theory Including Regions of Embedded Total Pressure Loss", AIAA Paper Nr.
88-0320, AIAA 26th Aerospace Sciences Meeting, Reno NV, Jan., 1988. Attached.

List of Related M.I.T. Theses {(Master of Science)

1. Weissbein, D., "Embedded Vortical Regions Within Otherwise Irrotational Flows",
M.I.T. S.M. Thesis, June 1987.

2. Scott, M., "Nonlinear Airfoil Wake Interaction in Large Amplitude Unsteady
Flow", M.I.T. S.M. Thesis, June 1987.

List of of Recent Interactions Away From M.I.T.

Jan., 1987 AIAA Annual Aerosciences Meeting, Reno NV. —_—
June, 1987 Visit to Cambridge Univ., Cambridge U.K., esp. Sir W. Hawthorne ‘—_—Ei’
concerning general aerodynamic theory. 0
J
July, 1987 AFOSR Workshop on Aerodynamic Separation, Colorado Springs. —
Aug., 1987 Visit to DFVLR in Gottingen, W. Germany esp. Dr. B. Muller, et. al.,
concerning CFD studies of delta wings. sostion/
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NONLINEAR AERODYNAMICS OF TWO-DIMENSIONAL
AIRFOILS IN SEVERE MANEUVER®

Matthew T. Scott*

Engineer. Aerodynamic Technology
Bell Helicopter Textron, Fort Worth, Texas

James E. McCune**

Professor. Dept. of Aeronautics and Astronautics
Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

This paper presents a noalinear theory of forces and
moment acting on a two-dimensional airfoil in unsteady
potential flow. Results are obtained for cases of both
large and small amplitude motion. The analysis, which
is based on an extension of Wagner's integral equation
to the nonlinear regime. takes full advantage of the
trailing wake’s tendency to deform under local veloci-
ties. Interactive computational results are presented
that show examples of wake-induced lift and moment
augmentation on the order of 20 percent of quasi-static
values. The expandability and flexibility of the present
computational method are noted, as well as the relative
speed with which solutions are obtained.

Nomeanclature

alts Angle of attack

hits Height of airfoil midchord above
reference axis

C.. Un Radial and tangential components of
velocity in the transformed (circle)
plane

a Radius of airfoil in transformed (circle)
plane

8 .1 Angular running variables in trans-
formed (circie) plane

r Circulation strength

iy Cartesian coordinates fixed on global
reference axes in the physical (airfoil)
plane

T Cartesian coordinates parallel and

normal to the airfoil

= This study was supported by AFOSR Grant No. 86-
157 and by NASA Langley Grant No. NAG-1-658.

* Presented at the 26th Aerospace Sciences Meeting
of the American Institute of Aeronautics and
Astronautics. Reno, Nevada. January 1988.

**  Associate Fellow AIAA
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Y .(x.t) Position of the airfoil or camber line in
physical (airfoil) plane

(gl Total tangential velocity on the airfoil

uy (8) Wake-induced tangential velocity on
the airfoil

Uw (B) Wake-induced velocity normal to the
airfoil

s Distance along the wake from the
trailing edge

Smazx (t) The location of the end of the wake
farthest from the trailing edge

Yw(s. t) Strength of vorticity in the wake

(W) Average tangential (parallel) velocity
component on the airfoil:
we) = (as) + as+m)/2

aa(g) The difference in velocity components
on the upper and lower surfaces of the
airfoil; equal to the strength of the
vorticity on the airfoil:
Aa(g) = wuB)- a8 + 7) = Y/B)

U, . 0, Free stream velocity and density,
respectively

] Potential function

Lit), M(t) Lift and moment on the airfoil

c Chord length

To(t) Quasi-steady bound circulation

Cofs.t) Discrete vortex location in the wake

Xy, Location of the trailing edge

{ntroduction

Early studies of the linearized response of the forces
and moment acting on an airfoil in unsteady flow,
including the effects of its own unsteady wake. have
been described by such authors as Theodorsen.! von
Karman,2 Kussner.3 Sears,t and Wagner.5 Limiting
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assumptions in the classical two-dimensional analysis
are that the airflow be idealized as a potential flow, that
the wake be approximated as trailed out flat behind the
airfoil, and that the amplitude of airfoil motion be
correspondingly small. However, modern requirements
for aircraft maneuverability now dictate that problems
associated with fully nonlinear, large-amplitude,.
unsteady flows be addressed. Thus. the theoretical basis
for the linearized response must be reformulated and
extended to allow the inclusion of nonlinear effects,
including wake deformation. The wake must be allowed
to convect freely, so that an effective "history” of the
airfoil motion is present in the wake elements. An
extension of Wagner's integral equation2.5 is necessary
to relate, in a time accurate sense, the strengths and
positions of each of these wake elements to the
circulation on the airfoil.

With the interactive capabilities of a VAX 11.750
computer and solving for only one unknown per time
step, it is possible to convect the wake very quickly, and
this enables the user of the program to see the wake
unfold and flow downstream as the program runs.
Output of force and moment histories is generated on-
line, enabling a quick test-and-evaluation turnaround
time of only a few minutes per case. The following
sections outline the derivation and implementation of
this interactive nonlinear solution and present results
for typical input histories.

Derivation

Laplace’s equation in the vicinity of an oscillating
airfoi} in a two-dimensional flowfield can be solved
explicitly by means of the classical Joukowski
transformation of the region to complex space 5.7 By
using the theory of conjugate functions, and following

. the explicit derivation of reference 8, we can describe

the radial and tangential components of velocity that
exist on the airfoil in the transformed plane as follows:

A S (=8 (1)
U'/a'ﬂ’=+2—n . v, a.cl cot T)dr
S (-8, r
=B e o =B LA (2)
v,a.f =, vy @t ml( 3 (}dl * 3um

To generate the appropriate circulation on the airfoil
and in the wake, the Kutta value of circulation is
applied. and (2) can be rewritten:

2n

g Y= -— v f{a.c)
/} 2n 7] "

snp +sint I + cont
g - d (3)

cosfl ~cos¢ ant

"

Boundary conditions at the surface of the airfoil are
prescribed in the manner of reference 9 by the use of an
implicit variable formulation. For purposes of
simplicity, the airfoil in the present study has been
assumed to be a flat plate whose instantaneous position
relative to a global reference system can be described by
a function n, as follows:

vt =v-Y x it (4)

el nl Al Jhad

In equation (4), Y./ x.t) denotes the position of the plate
or, more generally, the camber line of a given airfoil.
Given this formulation. we note that the substantial
derivative Dn/Dt must vanish at y=0.10 Therefore, if
the equation for the position of the airfoil is defined. the
velocity on the airfoil at a given time ¢ and position x
may be computed. The present formulation of Y(x.t)
involves the uncoupled use of two parameters: A(t), the
height of the midchord above the reference axis, and
ait/, the angle of attack relative to the free stream. An
input or "forcing” function is defined by setting the
variation of these two parameters with time. The input
function then yields surface velocity components
through the use of the substantial derivative.3

Conjugate function theory requires that the veloci-
ties impinging upon the airfoil due to the presence of
wake vorticity be “removed” from the problem before
proceeding. This process is illustrated in Figures 1
through 3.

~o Uw
_—n

—t
_—h

Figure 1. Apparent wake-induced velocity on an airfoil.

Figure 2. Velocity at airfoil surface due to additional
bound vorticity.

Figure 3. Net flow with normal velocity cancelled at
airfoil surface.

Figure 1 shows the apparent wake-induced velocity
impinging on the plate. [a order to counter the normal
velocity a “fictional” problem must be created (Figure 2)
in which additional bound vorticity is produced on the
surface of the airfoil. When these two solutions are
added (Figure 3), the no-flow-through boundary con-
dition of the net flow on the plate is achieved. Conjugate
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o function theorv must create the “fictional” flow by Calculation of loading, lift. and moment proceeds 3
) . measuring the wake-induced upwash at each station along classical lines by means of the unsteady Bernoulli

:h ’ and then inducing the bound vorticity on the plate to equation:

N counter the upwash. Thus we may write that the total

Vot velocity component parallel to the plate, a(8), is 0

i composed of the addition of the wake-induced —dp=p_ Gy i+ A( — )I (9
14 component, u,{8), and the conjugate function denoted * x
oL by equation (3). Reduction of the resulting expressions requires a

! judicious use of the Glauert Integral and ultimately J\
%" ) ; i .8

‘L,&. e N MO (g ane i leads to the following final equations:

: ;: 2nly 2sinf LcosB ~cost . )

".lg\. L = pag l Ju (U. + At tana(o) + m:am ) x

t

N Lreoselye s u i) (5) VEN

M sing : L I

::t ( (ZU, sina(dd ! - cos B) - X.c lﬂ))dﬂ + g J I—-CO—Sp x

W u.{B) may be derived by the use of the Biot-Savart K v cosal)

":. law in complex form:

' s EVEN

R~ —(w sina (0l — cos) - 2. (m)dp 10
U onax ] ] @ ¢

g u -to ='_J Y, (st ——————ds (6) K

;‘;u v e 2m by 8 nte -L.u(s.t)

0

DO 2 "

,’:‘ M(l):p’(é:) { ] (U_msa(t)coaﬂ+

.:::' Since the circulation on the airfoil can be described ¢

X)

as the difference between the velocities af8) and

° i 8+ n), the loading, lift, and moment can be computed K(thsina(Dcosf + u (ﬂ)cocﬂ)(zu sina () X
if the velocity i(8) can be found for values of 8 between 0 @ =

Sl and 2. One very important outcome of this analysis is

-',.fp that, for the general nonlinear case, the following EVEN .
\ Al :
'*5‘ expression is always true: (1 - corp) - 2, ‘ﬂ’) a5+ sl (1 - con2f) X
) ",“'L: K 0
1».! (a@)=U_ cosalt) + u B (7N
. EVEN
e o » i(w_ sina (I — cosf) =L (ﬂ))dpl (11)
o where (4 (8) is taken to be the average of the velocities & x
K ~,.:; u(8) and & (8+ ). This result proves that the only in-
o fluencing factors on the average platewise velocity are =~ where we have defined:
the free stream, the angle of attack, and the location of
Kt the wake's vortex elements. The linearized theory is EVEN
) recovered if the wake is trailed out flat behind the airfoil 2 B =
by and the angle of attack is small. Equation (7) then S
reduces to the familiar expression (i(B)=U_ as re-
DA uired.2 a
"\ q . *l—msﬁ¢ . (”[ 1 + cosc « 12
! . . a 0o (cost = cos B (sin 1)
n The expression for the vorticity on the plate at a
position 8 is more complicated, but still conveys The lift has been adjusted for the “leading edge force”
® meaning: in the classical manner, and the moment is about the
2 semi-chord. If (10) and (11) are expanded, a few
P8 I —cos important points become evident:
> -y B =upr=aB+n =2U sin a<c)—2U.msa(z»(f-—)
-~ sin B 1) Linear terms are recovered.
: < 2) Between the prescribed modes of motion h(t) and
s ‘(' sain . g( I —cosf )*" ( ( vt (8) aft) and their time derivatives, cross-coupling
®a —Satsing n'  sinf 0 “w™ cos t=cosf ) becoq‘es very important.
s ) 3) No single term requires more than a double
J,\.: where v,(£) is measured at a station £ on the airfoil and quadrature over the surface of the airfoil, and
R is derived by means of equation (6). We notice that the most integrations require only a single sweep.
9:\ first two terms on the right-hand side of (8) are classical
. ;’Q' linear terms, while the final two are nonlinear. Reference 8 gives a full explication of the terms.
"4y
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e Wagner's Nonlinear [ntegral Equation Typical results for the program are given in Figures
¥ .- . 4 through 7. In Figure 4 we recreate Karman's starting
. Wagner's integral equation.2.5 shown in equation problem by imposing a step function of magnitude one
R (13). may be described as the relationship between the degree in angle of attack at ¢=5 in order to apply

quasi-static circulation I, /¢) bound to the airfoil and the  instantaneously a constant bound circulation strength
A strength of the trailing vorticity at a position § in the to the airfoil. Figure 4a is a trace of the input function,
i wake. The extension to the nonlinear regime effectively  and Figure 4b is a picture of the airfoil and wake taken

frees the wake to convect under local velocities by at¢=80. The free stream velocity, which is the same for
allowing the streaming variable s to integrate over all cases presented in this section, is equal to ¢/4 per
complex space where the wake now resides. The time step. Figure 4b shows the characteristic roll-up of

; resulting equation (14) is valid when we are careful not  the starting vortex as well as the bowing and overall
4 to integrate from one branch to another, as proven in  downward displacement of the wake.
L) appendix A of reference 8.
' In Figure 4c, the lift coefficient asymptotes to its
K steady value as the starting vortex convects down-
RIS e stream. In addition, Kdrman's starting value of the lift
~ r,n=| v LoV it (13) coefficient is recreated. Just as in the classical case,
> o T Cr(t) attains half its steady magnitude immediately
3 after the motion is completed. The nose-down pitching
B ‘ moment (Figure 4d) about the midchord shows initial
e b TR0 (14) overshoot of the steady value, but like the lift
r,0= Rel J p sV —— dx coefficient, the moment coefficient eventually decays
: " LV toward the steady asymptotic solution. The overshoot
gives insight for the case where the airfoil is uncon-
In equation (14), the wake vortex location §.s.t) is  strained in motion, since the increased nose-up moment
' measured in the coordinate system fixed to the plate, would tend to increase the angle of attack of an airfoil
2 and smqy ¢/ is taken to be the end of the wake farthest responding to induced forces.
K from the trailing edge x,;.. Equation (14) is written to . .
[ take advantage of the discrete vortex method of Figure 5 shows the results of a large-amplitude
. modeling the wake, and the integration relies on the oscillation of the height of the airfoil around the
r. fact that the flow is assumed to be non-dissipative. This reference axis. The plunging airfoil experiences the
& assumption assures that an effective “history” is motion shown in Figure 5a, and the resulting wake
9 maintained in the wake. It also guarantees that there  Shows the large-scale roll-up patterns of Figure 5b. This
' are two unknowns at each time step: the strength and ~ Wavy wake resembles an early stage in the development
y the position of the vortex formed closest to the trailing of the Kdrmén vortex street as exemplified in Van
edge. As is also discussed by Scott,8 an effective and Dykel3 or Mook et al.12 Figures 5¢ and 5d detail the
useful solution to this problem is to use an offset or lead-lag characteristics of the motion, with Figure 5c
“threshold” distance that is small in relation to the Showing that for a reduced frequency of 0.05 cycie based
X chord length (typically c:32 to ¢ 4). Such a preset on the semi-chord, the unsteady total lift leads the
A position yields v, /s.t’astheonly unknown. [, (t)isa quasi-static lift by approximately 29 degrees. The
? known quantity at each time step because it depends amount of lead or lag that is presently predicted by the
! only on the velocity and position of the airfoil, which in  program for a range of reduced frequencies from 0.005
s the present case is a prescribed quantity. cycle to 0.1 cycle shows divergence from the classical
N results for linearized small-amplitude unsteady motion
¢ Implementation and Results derived by von Kdrmdn and Sears.3 However, the
: amount of phase divergence is fairly small, ranging
) The preceding analysis has been incorporated into a  from six degrees at low reduced frequencies to 30

fast and efficient interactive computer program. Inputs degrees at the higher end, and is purely a numerical

to the program include the threshold vortex offset dis-  error. The present theory may be rewritten, as outlined

tance and the history of the motion of the airfoil. by Scott® and McCune?. so that this computational
‘ Analytic or continuous functions are not required as inaccuracy in calculating the normal force and moment

inputs, so the user may create effective histories foreach  on the airfoil is eliminated.

of the independent and overlapping control variables

. ht; and art) by construction, using pieces of functions Figures 6 and 7 show two simple maneuvers and
‘ such as ramps, sinusoids. and steps as building blocks. their effects on the loading of the airfoil. In the first
; Our experience shows that the only limiting parameter maneuver, the airfoil undergoes a sinusoidal oscillation
- to this representation is the commonly seen breakdown in angle of attack for one complete cycle, then stops its
‘ of a wake formed of point vortices. Many models such as motion altogether, as shown in Figure 6a. Figure 6b

the Rankine vortex. the cloud-in-cell formulation.!! and  shows the wake curling up downstream, while Figure 6¢
the scheme proposed by Mook et al.12 have been offered  shows the effect of the maneuver on the total lift coeffi-

X as viable solutions to this inherent instability and will  cient. The lift vector is shifted away from the forcing

1 not be discussed here. Present coding allows function a(t). In addition, both the lift and the moment
K- considerable leeway in the choice of time increment and  (Figure 6d) show the residual effect of the wake's
N reduced frequency to obtain acceptable results.3 presence after the maneuver has stopped. The overshoot

- e e -
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in both cases is only 5 to 10 percent of the maximum
values, and the sense of direction of the overshoot is that
of the last completed maneuver. In other words, the
motion of the airfoil is an upward pitch as it completes
the sinusoid; this motion sheds counterclockwise
vorticity into the wake, in turn creating a downwash on
the airfoil. The downwash causes a decrease in the
airfoil's’lift as well as a sizable nose-up moment.

The controlling factor for the amount of overshoot
appears to be the magnitude of the derivative of the
forcing function. This is illustrated in Figures 7, where
the input is a step function in angle of attack followed by
the negative of this step 30 time increments later
{Figure 7a). Figure 7b shows that the wake has a
"square wave” appearance, and the lift augmentation
(Figure 7¢) is instantaneously on the order of 20 percent
of the quasi-static value. Step changes cause the airfoil
to move at high velocities (computationally finite but
theoretically infinite). These velocities then introduce
large amounts of vorticity into the wake. In the present
study, instantaneous lift augmentation on the order of
50 percent has been seen. And, as shown in Figure 7d,
the moment augmentation for the test case is sub-

stantially larger than that observed in the preceding C;,
history.

Conclusion

The strong points of the present computational
method are its speed and flexibility. Since we solve for
only one unknown per time step, the resuits may be
displayed interactively on a graphics screen. A typical
run of 80 time steps, which may extend the wake 20
chord lengths or more downstream, takes only 5 to 10
minutes to generate when run on a DEC VAX 11-750
computer. In fact, the speed of the graphics plotting
package is usually the limiting factor in such a
calculation. In terms of flexibility, the program can
accept any combination of sinusoids, pieces of sinusoids,
step functions, or constant values in each of the input
variables A(t) and a/¢). The user is free to "fly” a given
maneuver on his own, having only to “construct” a
realistic forcing function history with an interactive
input. The advantages of the method are therefore
threefold: the user input is flexible, the program is fast,
and the results are completely nonlinear and exact.
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INTERACTIVE AERODYNAMICS OF WINGS IN SEVERE
MANEUVER"!

J.E. McCUNE

Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT

This paper describes an interactive technique for the
study and analysis of the aerodynamics of wings in severe
maneuver. Both the 2D airfoil case and the cross-flow prop-
erties for slender 3D wings are addressed. To begin the
study, the non-linear interaction of a 2D airfoil undergo-
ing large-amplitude unsteady motion with its wake of shed
vorticity was studied interactively on the computer using
quick and efficient codes. The user can now input a “ma-
neuver” and study and observe on-line the non-linear wake
evolution and airfoil response. The allowable maneuvers
for the airfoil presently include any combination of pitch-
ing and plunging, suddenly imposed. Also, airfoil response
to sudden large-amplitude gusts of any shape and relative
passage speed can be observed and analyzed. A detailed
review of progress and results from this part of our work
is provided by Scott.[1] In the present report we empha-
size application of related techniques to 3D slender wings.
We also provide information on improved methods of cal-
culating lift and moment via wake integrals, emphasizing
conservation of impulse, for the 2D as well as the 3D case.

1 Introduction

One important use of the non-linear 2D airfoil study is
t> provide a test of the exact wake evolution method, ap-
pied at low amplitudes, against classical linearized airfoil
sheory. This tests the accuracy and efficiency of the present
approach, at least in the classical limit. But, in addition,
the 2D work has set the stage for significant advances in the
study of the 3D non-linear aerodynamic response of low-to-
moderate AR wings (delta and other) to severe imposed
maneuvers.

It has long been recognized that at large but finite
Reynolds Nrs. the cross-flow at any chordwise station of
1 slender wing must include two “wakes® (actually, wake
traces) representing concentrated vorticity, often partially
rzlled into “cores,” convecting above the wing surface. The

*This work is dedicated to my teacher, Prof. Wm. R. Sears,
in honor of his 7S5th birthday.

“This study was supported by the AFOSR under Grant Nr.
AFOSR-86-157. Earlier phases of the research were aiso sup-
ported by NASA Langley under Grant Nr. NAG-1-658.

role of this vorticity, emanating via “leading-edge separa-
tion,” is to maintain acceptably smooth flow at the wing
edges. At sufficiently large Raynolds numbers, this smooth
flow requirement is often called, even in this context, a
“Kutta condition.”

The present paper emphasizes recent progress in the de-
velopment of a new method for studying on-line the dynam-
ical effects of these two cross-flow wakes for the 3D wing.
The method proceeds in analogy with, but also extends,
techniques used in the 2D airfoil case. Additional ideas
and theoretical framework needed for the 3D case are out-
lined. It is shown that the wake structures above a delta
can be determined in a manner similar to the 2D airfoil
problem, and that these structures have a history unique
to any given maneuver.

As discussed in the body of the paper, the model of the
wake structure used is somewhat idealized, in that the de-
velopment during wake roll-up of vortex “cores” at finite
Reynolds Numbers, with attendant regions of distributed
total pressure loss, is not addressed. Similarly, the related
occurrence of vortex breakup is not included in the present
model. Our recent efforts to deal with these matters, as
an elaboration of the technique described here, will be re-
ported elsewhere.

2 Non-Linear Unsteady Wake Convec-
tion

2.1 2D Case

Any free vorticity associated with unsteady plane
2D fuid motion in the incompressible limit obeys the
Helmholts relation

Da, _ aq,

Dt =5 L VA=0

(2.1)
where ¥ is the planar fluid veloctiy, ¥ = (u,v,0), and
Q = curl ¥ = (0,0,Q4(z,y,t)). Formally, therefore, if
AWM = A(z,y,t) and A® = p(z,y,t) are two independent
characteristic solutions of

DA™

—— =T

(2.2)
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with appropriate boundary (/ initial) conditions, then (4 =
0,(n, A). Boundary conditions can be specified such that
one of these characteristic variables, ®n,” say, is constant
on streaklines drawn at fixed ¢. The remaining variable, A,
can be chosen to be

ASt-r (2.3)
where

Dr

Dt (2.4)

“.n

r” is then the Eulerian “drift timme® with the usual sim-

ple physical interpretation [2]. But if the velocity field is
discontinuous as in the classical model of concentrated vor-
tex sheets representing the wakes behind wings and airfoils,
this formulation may not be convenient.

It turns out, however, that when a concentrated vortex
sheet is embedded in the flow the variable n can be con-
veniently replaced by a continuous function, n., say, which
instead of (2.2) satisfies

(2.5)
and AZ . Vy’e =0

i.e., n. is constant on the sheet, and the sheet is a streak
surface (streakline in 2D), whose deformation is controlled
Sy convection at the mean velocity, <V >:

<Z>s%(g*«-[‘) (2.6)
As with a vortex sheet,
INE LAY 'e (2.7)

nas no component perpendicular to the sheet at any time,
as stated in (2.5(Db)).

In a distance ds along the sheet at any fixed ¢ the ele-
mental change in circulation, dT', is determined by the local

i:mp across the sheet of the velocity potential ¢(z,y,t) such
that

-dl' = daA%‘; =ds a"A¢ =dAa¢

(fixed ¢)
In the 2D unsteady case the strength of this potential jump,
A9, occurring at the sheet specified by n. = constant, is a
function of both 2z and t which must be determined. But
application of the Bernoulli equation on either side of the
sheet, together with the requirement that there be no jump
in static pressure across the sheet, yields the restriction
aaAf +<¥ > Va¢=0. (2.8)
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Thus, in the 2D case we can write 49 = Ag(}), and 4T =
dl(A) = - 2424} = I'(3)dX where

XAst-7 (2.9)

and

=4+ <y> V= (2.10)

Here, ¥ is the *mean” drift time of fluid elements within
the vortex sheet.

The variable n._can be expressed in the form n. =
y—Y.(7.t) where %-‘:‘ = v. With n.=const. on the streak-
line, we have y = const.+ Y.(7,t) on that line. When 7 is
expressed in terms of z at any ¢t we define a space curve,
y = y(z;t), giving the usual instantaneous picture of an
airfoil wake. (See Figures 1 and 2.)

As noted above, condition (2.8) was derived by requir-
ing that there be no net force anywhere on the free vortex
sheet. For systems of conserved global circulation, this cor-
responds to guaranteeing conservation of impulse for the
airfoil-plus-wake,

In the linear case, in which the wake is assumed simply
to lie along the z-axis extending from the trailing edge with
the vorticity within it convected at free-stream speed U,
the above exact results reduce to

- T—29
A - t-
U
a | 1
dz (Joo

a0 that, if ¥(z,t) is the wake vorticity in that limit,

dI‘(X)(“neu) — 3(z,t)dz

and
arligx 14 (£ (- 2222)) 2y (1= 222)
dx  dz Ueo dt U U

reproducing the classical result in the linear limit.

In the actual non-linear situation X replaces z as the use-
ful parameter along the vortex sheet representing the wake,
whether the wake is distorting and rolling-up or not. Thus,
for example, the total wake circulation at any given time ¢
is

Tuaselt) = [ TR, (241)

Further, the (plane, 2D) velocity induced by the wake can
be written in complex-variable notation as

N

T~

b
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= Although this model is certainly oversimplified because
) _ of such effects as separation of the return boundary layers
Ywake(Z: 1) = Vyage (39, t) = Wyyaie(2:¢) on the wing upper -:rface (leading to “secondary® and “ter-
= /' axr'(%) 1 ‘ (2.12) tiary® vortices (9], (10]), it offers an important improvement
278 /, 2-2,(2t) for real flows over the completely inviscid classical theory
. L . Re = oo) with its singular flow at the edges {11]. This
Here, 2 =z +1y, and 2, = 2, f-ty..u the .complei location go-tulated) wake pa"“:“i. often referred t: as [zhi result
a at ¢ of the vortex element having circulation dI'(A). of “leading-edge separation® in the present context. The
- This formulation provides a powerful tool for writing  strength of the vorticity is presumed to be determined so
Ny down exactly all the various non-linear effects related to  as to provide Kutta conditions (smooth flow) at both wing
h the wake in a manner which conveniently follows the con-  edges. (Section 3.)
s i o e ok gl s vl S8 s it sl o s, e i ey o, he ol
u"\" ; . . pattern in Figure 3 has a further defect. Vortex breakup
ot the wake, it provides a convenient label for each such el- (12], (13], [14] can be expected to occur at some conditions
\."-.: ement. In the present example A is the (earlier) time at ¢ n PR b P ad N b
BN which a given element entered the wake at the airfoi] trail- of interest wit 2 ‘°““‘,‘““‘ sudden ;zn.d intense change
" ing edge. Figure 1 illustrates a portion of the evolution of a :;:z:?: c}};;'d.wxu elot;a:;:nn:: :::0;01':1::13 ila'"_e:: val:v’e‘
streakline constituting a vortex sheet, and Figure 2 shows break g 1his paper Pt to deal wi orte
a typical example of a computer-generated version of the reakup phenomena.
wake behind an oscillating airfoil. In the unsteady case, especially for 3D wings in severe
On the computer, of course, the above continuous vortex maneuver, the classical wake p?ttem also has other de-
. . . . fects. Clearly, for example, a pilot could well be able to
sheet model is replaced by an approximate ducreﬁued ver- 1 itch idl tch and th b his
sion. Individual discreet vortices of strength §T'(A) replace roll or pitch 0 rapi Y a8 fo cafch and move tarough Al
the line elements of the sheet. Details of how to do this °"° wake ga.ttern.. Lade.nt.zndmz wing relponn'o to that
properly so as to maximize the effectiveness of the approx- sort .°¥ comjlm?n w:xll req.uu"e improved understanding of the
imation have been discussed by Mook, et. al. (3] and more vomc.xty distribution thhu‘x t!u cores themselves and any
recently by Scott [1]. associated total head loss within the wake system. (15], (16]
) For that matter, the same improved understanding of the
The computer screen provides an almost ideal tool for  cores and total pressure defects appears to be required to
lepicting and understanding wake evolution in this frame-  interpret vortex breakup [12]. In the following discussions
work. At each time step each fluid element (and free circu-  we largely ignore such defects, leaving their treatment for
‘ation element) is advanced to its new location in z and ¥,  future elaborations of the technique we wish to describe
moving in the field of all its neighbors. Since A is constant  here.
for any 8uid elem'ent and ¢ is knowr:}: then 7 is determined The evolution of the free 3D wake pattern over the wing
:;;:?c:ﬁ: ::::l:::;;xhu:;:nﬁ;:,a;Nt::nczrﬁp:::ra:?d proceeds in a manner analogous to the 2D case, complicated
. . . . . only by the need for an additional characteristic variable
clements in a given wake are shown in their new positions in the chordwise direction. To maintain zero net force on
2 ok sew me o gl e e SHowh WL ey ah s ement, - 305,50
iepicts the momentary shape and location of the vortical once it enters the wake pattern at a wing edge location, is
wake. We discuss in Section 3 how the individual strengths convected unchanged at the speed determined by the mean
IT. of the circulati | det ined ' velocity at the sheet, including the motion “induced” by all
1T, of the circulation elements are determined (the Wagner . . .
squation). its neighboring vortex elements. Thus, again,
2.2 3D Case aa#* <L > Vae=0 (2.13)
The classical picture of the 3D vortex-wake pattern above where ¥ = (u,v,w) and
1 lelta wing in steady flow at large Reynclds Nr. and mod-
est angle of attack is shown in Figures 3 and 4. At any <V >= l(z* +V7) (2.14)
chordwise station the trace of the double wake (somewhat 2
idealized) is as illustrated in the inset of Figure 3. The Once more we define the mean drift time, 7, now in the
necessity for a wake pattern resembling this structure, in 3D feld, such that
: srder to provide acceptably smooth flow at the wing edges
g at large Re, has been recognized by many authors (4], (5], a¥
'S ' 5], 7], (8]. Even though the vorticity may roll up parlially ETR L>vr=1 (2.15)
. : « »
.‘:::: :Ir:; tizozl.:c::l;z rd?;::, di:f:ti?:nvﬁ?c: fr:?l:.i:e:o::: T:i.: and reintroduce the characteristic variable (now 3D)
5};.- tence of the joining umbilical vortical sheets from the edges _
"'\; t5 the cores, as illustrated. A=t-7 (2.16)
%
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which is constant, as before, for each fluid element moving
in the vortex wake system.

What emerges is the description of the overall 3D wake
pattern, however contorted, made up of twisted streaklines
of vorticity extending at any instant from the plane of obser-
vation at a given chordwise location to the upstream wing
edge location at which the corresponding vortex elements
have entered or are entering the wake system. To describe
the shape and location of these streaklines we again need
the characteristic, n., as defined in (2.5), and one additional
characteristic

e =2 2:(2,y9,2,t) (2.17)
where _
Dz, _a2Z. ) _

For the latter we can choose the boundary condition Z. =0
at or along any wing edge so that Z. is just the chordwise
distance at any ¢t and z a given element of the wake has trav-
elled since entering the system at the upstream chordwise
location ¢,, and at a corresponding earlier time A. Thus,
¢c = 0 for any wake element entering the pattern at the
wing vertex, and ¢. = z for any element just entering at the
plane of observation at z. The n, and ¢, variables define
instantaneous surfaces in the 3D case, and their intersec-
tions are the streaklines making up the wake pattern at any
given moment.

In analogy with the 2D case one can express the variables
n. and ;. in the forms

e =Yy — Yc(?, S.c;t)
se = 2 — Zc(?: "cyt)

7, in turn, is a function at each z and ¢ of z, the height of
*he wake element above the wing surface. For example, in
the linear model of a wake, with wake elements convected
:n straight lines at speed U, as depicted in Figure 4(b),
we have

= 3
" T Unsaa T Zedge i e = Yedge
y = Yedge(zedge) + fUnTcosa

Zedge +Unpcosa?®

23 that the simple surfaces

h
z= zedge tan @

fh
V= Yedge tan&

are formed. The more realistic non-linear case follows sim-
.iar rules and is depicted in Figure 4(a).

When observed at a given chordwise location, z, in the
zorresponding cross-flow plane including the wing trace, the
nrtex pattern over the wing creates a trace (actually, a pair
>f traces) of the wake as it passes through the observation

TWITwWUwWYLTY "'Ir'\"'\!‘vv\rtv-71"I'-rlv‘v"'"'wvinv'“vn'w'n'n--.v--—--—--«- - e e s ,_1
L A

plane. In the unsteady case, these traces will deform, con-
tors, and appear to roll-up, much as if we were observing a
2D airfoil with two wakes rather than one.

In Figure 5 we illustrate the sort of wake surfaces, and
their traces, to be expected above a delta wing undergoing
yaw and roll. Simultaneous observation of the wake trace
behavior at several cross-flow planes can provide significant
insight as to the interactive aerodynamics associated with
violent maneuvers. On-line use of computer graphics, in-
cluding split screen capabilities, promises to be very helpful
in understanding the large-scale unsteady behavior of the
wing and its wake.

On taking account of the right hand rule in the definition
of circulation, each circulation element in each trace at fixed
z and ¢t can now be described in terms of the above variables
a8

drsrao - —dAé({c,X)’r'D

drPORf - +dA¢(§g x)ronr (219)

in view of (2.13). (In the steady case, with nothing changing
in time at a given z, only the first variable need appear and
dT = dl(z - 2.(z,9,2)) = ['(g.)d¢.) in each wake.

The drift time ¥ observed at z and t for any element in
either of the two wake traces is related to ¢., 80 that we
can find A(s.,2,2,t), and/or the inverse. Then, the total
circulation at fixed z and ¢t in either trace (starboard or
port) can be written

dr(fﬁ X) (;C)

I-STDD‘PORT(Z, t) = /
wake (fixeds.1)

(stsp.porT)

* dr’le.PORT
WO i
[}

d¢e
e (:i’ aAé‘_aA¢.d_/\ STBD PORT (220)
TT), 7\ 32t dg. '

Note that in the linear case or for slender wings at mean
angle of attack @, 3> = Tt

As discussed in Section 3.2, the incremental circulation
associated with each vortex element is determined just as
it enters the wake pattern %0 as to always maintain the pos-
tulated smooth fow at the edges. After that, each element
is simply convected, at fixed elemental circulation, to new
locations in the wake pattern.

3 Determining the Vortex Strength
Distribution in the Wakes

3.1 2D Alirfoil Case

In our treatment of this case we assume the Kutta con-
dition to hold at the airfoil trailing edge at any instant.
The airfoil itself is assumed to be a flat plate' in arbitrary

1A general 2D airfoil profile can be treated in the same man-
ner, with only & minor elaboration of the technique used here.
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plunging and/or pitching motion.

As already discussed, the unsteady airfoil motion requires
the existence of a wake such as illustrated in Figure 2, s0
that the net circulation of the wake-plus-airfoil is constant.
No linearisations of the airfoil motion of wake contortions
are admitted in the present treatment.

The airfoil circulation can be described conveniently in
two parts. The first, [o(t), is the “quasi-steady” Kutta
value associated with the airfoil motion itself and calculated
as if no wake were present. Thus, [s(¢) is known for any
specified airfoil motion. The general expression is

¥ T +2
[s = —wcUx sina(t) + 2/ d29,(2,t) -3% (3.1)
-4 F o

where “c® is the airfoil chord, a(t) is the angle of attack,
% is the instantaneous chordwise coordinate along the air-
foil, and 89(2,t) is the actual normal component of fluid
velocity at the oscillating and plunging plate necessary to
accommodate its unsteady motion. (See Figure 6). Then,
without approximation, (see Ref. (1] for more details)

o = hcosa(t) — 2a (3.2)

and

, rel
Fo(t) = —me (U°° sina — hcos a) - Td. (3.3)

The bound vorticity associated with T'o and 0o is called
~o{2,t) and
%

Lo(t) = / &70(5'”42‘ (3.4)

Defining the angle variable 3 such that 2 = £cos g, we
can write

T(2,t) = —Z(U,sina-ﬁcoaa)l;—;?e

- casinf (3.5)

This “quasi-steady” bound vorticity would be all that is
present if it weren’t for the wake. But, as illustrated in
Figure 6, and calculated in Eq. (2.12), the wake causes
an apparent upwash at the airfoil which must be cancelled
zut by the action of additional bound vorticity on the air-
f5il, 71(2,¢). The amount needed is given by the theory of
zonjugate functions in the form

—cosB " d'('“wake) (14 cosr)
wsinf o cosr —cos 3

mi(t) = (3.8)

where, as in (3.5), the Kutta condition bas been applied at
the trailing edge. Correspondingly, the additional circula-
tion on the airfoil, [';(¢), is given by
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The quantity d,,,,.(2,t) can be obtained readily from
(2.12). Using a system 2 = ¢ ~'™"'(z = 4A(t)) = 2 + 1§ ro-
tating and plunging with the airfoil, the normal component
of the apparent wake velocity at the airfoil is determined.
Inserting the result in (3.7) yields an expression for I';(¢)
in terms of an integral over the wake vorticity. Details of
this calculation are avajlable in Ref. [1].

The next step is to apply the Kelvin Theorem in the form

I‘mfo“(t) + I‘“k.(t) = constant = I'(0) (3.8)

where I'(0) is any existing initial or steady-state airfoil cir-
culation. For example, if the airfoil maneuver begins from
steady 8ight at angle of attack ao,

['(0) = —xcsinao.

But we have

Lairfoil = Fo(t) + Tu(¢)

and T pe(t) is written out in Eq. (2.11), also in terms
of an integral over the wake circulation elements. Cancel-
lations occur, and the final result is, in complex-variable
notation,

To(t) - T(0) = Rc/ dir‘(i)\/%__

0

where “Re” means real part implied and

3, = e'7 (2, - k(L))

with z, as defined below (2.12).

Equation (3.9) was first derived by Wagner 17, in
the linearized limit, and used by many authors to under-
stand airfcil response to sudden starts, sudden (but small)
changes in angle of attack, and flying through gusts. (18],
(19] It seems remarkable that the non-linear version (3.9)
of Wagner’s equation is essentially the same as his origi-
nal except that 2.(1', t) is complex, reflecting the distortion
and roll-up of the wake. The principal mathematical nicety
in the non-linear case is the need to determine the correct
branch of the complex square root occurring in the integral.
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The left-hand side of (3.9) is known as a function of ¢ for
any given imposed airfoil motion {see Eqn. (3.3), for exam-
ple), so Eqn. (3.9) is an integral equation for the strengths,
dT(X), of the circulation elements in the wake.

Operationally, on the computer, use of Eqn. (3.9) to
determine the wake vorticity is relatively straightforward,
except for finding the initial incremental vortex element
at the very start of a maneuver. Difficulties arise there
because the kernel on the rAs of (3.9) is singular. An ef-
fective method for treating this crucial first moment of the
“starting problem” is described in Ref. [1]. After the pro-
cedure has been properly started, however, it runs easily
because once the strength of a vortex element has been de-
termined by (3.9), at the instant it enters the wake, that
strength, as measured by its incremental circulation, re-
mains unchanged as the element convects to its subsequent
positions in the wake.

3.2 3-D Case. Smooth Flow at Both
Edges

From Kelvin’s theorem we know the net circulation in
each cross-flow plane is zero:

Csrso + Cronr + Draace =0 (3.10)

We treat the 3D case in this paper in the slender-wing
(low AR) limit, determining the velocity and potential field
in each cross-flow plane on a quasi-two-dimensional baasis
in the spirit of Ref. [11]. In that limit we must determine
the 2D potential solution in each observation plane corre-
sponding to the concentrated vorticity on the wing trace
and in the traces of the two wakes (Figure 7).

In order to treat a general large-amplitude maneuver and
still maintain an inertial frame “almost® moving with the
wing, we specify a system moving with the mean or initial
steady flight condition, as sketched in the figure. This ini-
tial or mean forward speed is U, with angle of attack &.
A cross-flow observation plane at any fixed z (analogous to
*he computer screen) is oriented normal to the wing sur-
‘ace in ite initial or mean configuration. The observer in
this plane sees an incoming steady free stream of speed Uy
at angle & to the z axis. Additional pitch, yaw, or roll of
the wing, as well as plunging or sideslip of the wing ver-
‘ex, are perceived in each observation plane as vertical or
sideways displacements, Xo(z,t) and Yo(z,¢). Acceleration
or deceleration of the vertex in the z-direction is seen as a

3For 3D wings and their wakes during sudden and violent ma-
neuver the “slenderness direction”™ becomes somewhat ambigu-

sus. Near and on the low /R wing, for example, quantities
may vary slowly in space only in the instentaneous chordwise
direction, whereas this is generally misaligned with the original
z-axis of Figure 7. The main walke structure, on the other hand.
may atill tend to be “slender” with respect to the original Bight
alignments. Ultimately, of course. use of the full 3D relations
s tequired. We are suggesting here, however, that this be done
after fully exploiting the additionsl insights to be gained in the
Jones-Munk tradition.
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growth or shrinking of the wing trace at any z. For ma-
neuvers with very rapid forward acceleration or complete
changes in flight direction, a frams fixed in the atmosphere
may be preferable, with the wing flying “through® the ob-
servation plane or planes. Of course, one could also choose
an observation system fixed in the wing, with attendant
complications associated with non-inertial frames of refer-
ence. For our present purposes, we adopt the scheme shown
in Figure 7.

In complex-variable notation the quasi-2D cross-flow ve-
locity field associated with the wakes is, with Z = X + 1Y,

Uwake ~ Ywake = Wwake(Z)

1 *  drT*P(c.,X) 1
= -2'; {/o d{, d{. Z - z"r.p (311)

©AroMT(e,X) 1
* /o =4, Z-zrow

in analogy with (2.12). Here, we have used (2.19) and
Z27T%%(¢,,t,2) and Z7°*"(c.,t,2) are the instantaneous
complex locations in any given cross-flow plane (z,y) of the
vorticity elements in the starboard and port wake traces re-
spectively. In the following we also have use for

Wwake(‘ ) = ¢—ixww3ko

= awake = Ywake-

The boundary condition at the wing trace as viewed in
each cross-flow plane can be written in a form somewhat
similar to that in (3.2) for the 2D airfoil. Using the coor-
dinates suggested in Figure 7 the actual component of ve-
locity in the (z,y) plane normal to the instantaneous wing
trace can be written

Us(§.2,t) = MDigz'—t)coaK+D—'%—(:’—t)-sinK
.DnK(Z.t)
y Dt (3.12)

where 2 = 2+W 2 Foralow AR wing in steady forward
flight without pitch or yaw, for example, W = Ug cosa,
since the additional fluid speed in the chordwise direction
is neglible because of the wing slenderness. During pitch
and yaw, however, W requires adjustment to allow for the
instantaneous flight angles and the fact that the chordwise
{or “slenderness®) direction is then misaligned with the z-
axis chosen in Figure 7.

Starting from the mean or initial steady fight condition
described above, an observer on the wing sees an effective
cross-flow from below of Us sin @, the normal component
of which is Ue sin@cos K. Eqn. (3.12) then allows for any
additional unsteady wing motion, including any accelera-
tion of the wing vertex as well as pitch, yaw and roll about
specified axes. Any built-in camber of the wing can also be
included in the form (3.13). The angle *K™ is an apparent
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“roll® angle, observed at fixed z, which is actually a com-
posite of the usual Euler angles. For this reason Xo, Y, and
K can depend on s as well as ¢. For simplicity we assume
the wing trace to be flat, although the method used here can
be generalised to include any moderately thin cross section
as well as control surface deflections. Note that §, in this
case, is the instantaneous spanwise coordinate as shown in
Figure 7, and % is the effective semispan at that instant at
the specified z. Thus, Xo(z,t), Yo(s,t) give the instanta-
neous position of the mid-effective span which is not on the
wing center line during yaw.

If there were no wake the discontinuous part of the ve-
locity at the wing trace, AVs, would be

AVoltrace =
__19_ [(U.,, sind — on) cos K — sin KD'YO]
R y be

(3.13)

gince in that case, according to (3.10), we would have
Frracs = 0. For example, in the limit of steady motion at
small @ and with no yaw, pitch or roll, (3.13) reduces to

2y

AVoltrace = - Ua (3.13a)

2
-

corresponding to Jones’ classical result [11]. Note that in
either (3.13) or (3.13a) the flow predicted in this way (with-
out vortical wakes above the wing) is singular at the wing
edges. The next step is to add the wakes and to determine
their vorticity distributions so as to “smooth” the flow at
the edges.

In a manner similar to that used for the 2D airfoil, we
introduce an “angle variable” such that

g = -;sinﬂ (3.14)

and use the theory of conjugate functions to write down
the additional vorticity (or jump in V) required at the wing
trace in order to continue to satisfy the boundary condition
{3.12) despite the velocity field (3.11) induced by the wakes.
The result is

Amtrace = AVOltrace + Af’l‘true

where
AV ipacy = + Lrnaca(zt)
b cooﬂ
d
2tn ﬁf ’ wake cos ’) (3.15)
cosr ~confd

The wing-edge singularities in these additional *wake-
induced” terms must exactly cancel the singularities in

. ag. - ai b oad ad calh ol ook aaf ood ood Al Sal bolh ded ol o dh A Sl i A i

AVoh,u. at both edges of the wing if our Kutta-condition
postulate is to be satisfied. Note that at this point we
can no longer simply assume I'rasca =0, but must apply
(3.10) in order to try to determine it.

In Eqn. (3.15) Owake(!?- t) can be written down in terms
of the wake integrals in (3.11). Cancellation of the singu-
larities at both wing edges then requires

for ¢ = +§:
DXo DY)l :D,
[(U #ing — —ﬁ) cos K ~sin K —— TS ] +b ;
- 2lrracse(2,t)
xb
a-PORT ‘rST’D
+R /d;, L L7
\[Zronr) + 8 " \/(Z'srnb)’ + %
for § = —%:
. _ DX, _ . .D,Ys] :D,
2[ Uxp ting - )conK sin K — 2 o ] ~b :
_ _2Traaca(z,t)
xb
. s “-PORT “ST'D
{
+Re—/ dee fe + <
" Jo \/(Z'ronr)’+57’ \/(Z'suo)’.,.l%

In the above relations

2ronT — ,~iK(s) (Z,"’"(gc,t,z) — (%o + iYo))
and

25700 2 e"K("')(Z;'”D(gc,t,z) — (X0 + iYo))

with the Z, as defined below (3.11).

Taking the difference of the two equations involving

Traacs yields Trpace = = BuK o5 that we obtain
2 Dt

the constraint

b* D,
Teoar(z,t) + Csrao(z,t) = S £ . K

B (3.16)

The sum of the two relations then yields an equation for
the vorticity strengths (circulation elements) in the wake
traces which is analogous to the Wagner integral equation
(3.9). The result is

(U,,., sing — D)SO) cos K ~ sin KDI;,O
. dr’o’"';: rsTe0 (. %)
- dfc + $c
/ \/(ZPORT '_ \/(Z_srao)’ + %

(3.17)

The left-hand-side of (3.17) is known at each z and ¢
for any given imposed wing motion. Thus, (3.17), together
with (3.16) and (2.20), determines the circulation elements
throughout the wake system within the present model. So-
lution proceeds in a manner mathematically quite similar
to the 2D airfoil case.




PrY PP TP pwyRTg TR TEr R NTY W e W W WS T L4 MY T
Lo s i o s ad e Auh aabe alleraae mia bis e diadod i ded el Sk Aakudintadt - <
Lo g hanead ok ot Ao da- he _ad i o ath o A e ot S

4 Loads, Forces and Moments

4.1 2D Alirfoll Case.
Unsteady Response

Large-Amplitude

In Ref. [1] the forces and moments occurring on 2D air-
foils in large-amplitude unsteady motion were calculated
using the pressures over the airfoil surface as predicted by
the Bernoulli equation for unsteady potential low. In reck-
aning the lift, a “leading-edge force® was included in the
classical manner, except that no linearizations were admit-
ted. This procedure was built into the “NLWAKE” code
reported in [(1].

More recently, we have reformulated the lift and moment
expressions by taking advantage of the possibility of ex-
pressing all or most wake-related terms (without linearis-
ing) in terms of the corresponding “wake integrals® - in-
tegrals over the (known) wake vorticity. This step mimics
classical procedures in the linear theory (18] and establishes
the equivalence of the original formulation in Ref. [1] with
the application of the principie of conservation of impulse.
Most importantly, the reformulation greatly improves the
numerical accuracy achievable in the codes. The reason
is that several large contributing terms in C¢ and Ca, in
NLWAKE almost exactly cancel, leaving crucial small dif-
ferences which can be difficult to calculate with sufficient
accuracy. In the extension of NLWAKE to include the new
f>rmulation, these partial cancellations are explicit and the
remainders are written in 3 manner more suited to precise
aumerical evaluation.

The (non-linear) expressions for lift and moment includ-
.ng the appropriate wake integrals in this way are written
zut here both for completeness and for comparison with
heir classical linear versions. For the lift coefficient, using
the notation of Eqn. (2.11), (3.3) and (3.5), we find

W (T 2 d [V dsaa0(2,0)
Celt) = Uwme <E>+U“c0laa_¢ -5 e

2 Y AAT(A) (c da) 1
- R S8 —— 1
ccosa e/; U3 2 dt/ a3 =1 (41)

2 ‘dAT'(A)I(¢c da\ = [a+1
-cconaRe/; U3, [(E E)—UCO'G]{ ;:T_l}

- étwake(‘)

where 8 = 22, /c with 2, defined as below (3.9), and U=
Us + Atana. The small non-linear term C, apa(t) is

ée wake(t) =
%
T UL toca /‘i 42 Gy (2,t) (10(2,8) + mi(2,2)),

(4.13)

and can also be written out in terms of wake integrals. The
resulting expression is cumbersome, however. It is perhaps

N PR I

more useful hers simply to note that C, .., o vanishes iden-
tically in the linear limite of a wake extending straight be-
hind the airfoil since it invoives 4y, .- Also, we have not
yet encountered a case, even in the non-linear treatment, for
which éc wake has been important, even though it clearly
can be significant or even crucial, for a maneuver in which

the airfoil fjes *through,” or just above or below, its own
wake.

The fourth term on the rhs of (4.1) also vanishes in the
linear limit, since in that case both £ (42) and Ucosa ap-
proach Ux. This term in fact illustrates the numerical ad-
vantage of the wake-integral formulation, since it represents
explicitly the partial cancellation between two otherwise

quite large terms.

The first three terms on the rhs of (4.1), on the other
hand, approach their classical linear counterparts exactly
in the limit of small amplitude motion. The 2nd term is
often called the “apparent mass” term, and the 3rd the
“wake effect.” Thus, on using (4.1), we know that the non-
linear theory appropriately reproduces the linear version,
and includes it.

The corresponding moment coefficient, Cm,, about mid-
chord is given in similar fahsion by

Coms (8) = 2Ucmcx/i d2 2 vo(2,¢)

Ug, - CzUa
e 4 §d2‘70(2.t)(£’—£}) s
tTa @), I (4.2)

—

1 CAAT'(A) [ ¢ da 1
*52’*'/0 i (5% 7=
1 YA [fe da\ =
‘z’*'/o ugf )[(5 %) ~Ceoral{Var=i-d}
(¢)

*C"‘wake

where

(1)

C"‘wake

-2 [Y . . . \
C_ZUZ/ » 2d2 “wake(z't) (70(2,3) ~n{t)). (4.2a)
Once again, the final two terms on the rhs of (4.2) vanish at

small amplitudes, and the first three terms reduce precisely
to their classical counterparts in the linear limit.

Computer-generated results corresponding tc Eqns. {4.1)
and (4.2) are illustrated in Section $ in terms of 2D airfoil
response to large-amplitude imposed moticna.

4.2 3D Case. Loads and Normal-Force
Distribution on Slender Wings

The pressure difference, or loading, across the wing for
the 3D case can again be calculated using the Bernoulli
equation {or unsteady potential flow on either side of the
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wing. As before, the wake-related terms are two-fold. First,
the associated velocity fleld of the wake, as given by Eqn.
(3.11), contributes directly to the pressure variations. Sec-
ondly, the apparent upwash caused by the wake must be
cancelled out by the effects of an addition wing-trace vor-
ticity, AVy(9,¢), as given in (3.15), thus implying an ad-
ditional jump in the 4% term in the Bernoulli relation. In
calculating the latter we take advantage of the posaibility
of writing ¢(z,y,t) on the wing on either side (+,-) as

0%(z,y,2,t) = ®(2,t; 9,2 = 0%)

where the coordinates (2, §) are as illustrated in Figure 7.
We find, for slender wings, with ¥V = (4,9, d)

1 1 top
-—Ap= -p] =p (2,49,07) - p*(z,£;9,0%)

o bottom
_ d¢ 3¢
=<y >-ar+a (P~ w3?) (4.3)
e V> AV
D JXO . DJYO
+—A@(zty)+AV( Dt sin K - Dt co:K)

where 22 = £ + W L as before. In writing (4.3) we have
also uud the notation deﬁned in (2.6) and (2.7) and below
(3.12), as well as in Figure 7.

As mentioned in Section (3.2) proper use of the slender-
wing concept allows us to repace W with W, provided we
recall that the low AR wing is “slender” along the chordwise
direction and not necessarily along the z-direction during
violent pitch and yaw.

The A® occurring in (4.3) can be written

AQ(i,z,t) = F,f.p(z,t)

+/;¢g AV(9,2,t) (4.4)

where AV is given in (3..3) and (3.15). Further, <V >=

-UpsinasinK +V, wake-

Expression (4.3), with (4.4), lends itself to relatively
straightforward calculation of the normal force distribution
Cna(2,t). Spanwise integration with respect to ¢ proceeds
in 3 manner mathematically the same as for the 2D airfoil
case, except that in the present model no edge forces are
included. The lift and drag and also the roll, pitch, and
yaw moments of a given wing can be reckoned in a simi-
‘ar manner, on including subsequent weighted integrations

sver z. We find
t)/ d§ p) (§.2.t)

2
Ub(z
=1 D'{zUaunEco‘K

D'Yo .
Dt cos K + Dt lmK)}

2
- (E—‘-) {'U,. sin@sin K

9,
L :’.""‘ W Y

) : (Q ORI
ORI RO LGN
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lxo :Yo

D tin K+ e ¢ K} (4.5)
+C, +Ca

wake

where

A |
Cowake (1) = é:%% {b/_’ 40 (cos’ §) Uyaie

[sTe02 _rroar }
-+

2 (4.5a)

and

) $
Culz,t) = m‘-/ 40 cos BV,ake (AVo + AV))  (4.56)
-

Using (3.11) we can express C,.1.(2,¢) in terms of a
wake integral analogous to the 2D airfoil case. The result
is

C"wake("t)
! gtRc/; d{c{ dr;%’-(%—ia.—i\/ e + 1’
+g£:£(—%—ia,—i ¢;+1)} (4.6)
where
8, =2227%°/h; a, =227°%7 )b
and we note @, = —¢ at the starboard edge and a, = +t at

the port edge.

In the interactive method for the slender wing case this
latter “wake-integral” is easy to calculate on the computer,
since the necessary information becomes available automat-
ically at the same time the wake structure itself is being
generated using the method described in Section (3).

The Ca(2.t) term can also be calculated in terms of wake
integrals, and that approach appears to be the most con-
venient and numerically accurate method to determine its
value. We note here only that C, has no linear counterpart
(and vanishes by symmetry in certain simple flight config-
urations), yet its effect appears to be potentially of great
importance in certain maneuvers involving intimate inter-
action between the wing and its wakes.

The first term on the rhs of (4.5) corresponds for small &
to the linear theory result of Ref. [11]. In fact, for pointed
slender wings in steady flight at small &, this term inte-
grates chordwise to yield

CL = R 3, (4.7
2
the classical Jones result. The additional terms in the corre-

sponding curly brackets represent the local, instantaneous

I
A ,l ,"‘ r‘.l

l
“.t ) t“'h“.w‘ 0.‘ L8 'l.
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normal-force effects of plunge, pitch, etc., that would arise
if there were no wakes.

The wake-integral terms, C» .(:,t) and Ca(s,t), rep-
resent "history effects® in the relationship between wing
motion and wing loading or response. As we have seen,
the various vorticity elements in each wake reflect condi-
tions imposed at upstream wing edges, each at an earlier
time. Thus, for example, in the event of a sudden maneu-
ver of short duration, the outer parts of the wake affecting
Ca(z,t) will often represent wing attitude and other condi-
tions in effect before the maneuver began. Conversely, af-
ter a given maneuver is “over®, many outer wake elements
will still reflect the actions taken during the maneuver, so
that wing loading will take time to adjust and/or return to
“normal.® Naturally, any occurrence of vortex breakup can
have a drastic effect on this history-related part of the wing
response, although it may not always be unfavorable. Of
course, before we can regard wing response as “determinis-
tic® we must learn how to predict both the occurrence and
specific nature of such vortex bursting. [12]-{14]

5 Typical On-Line Results:
Linear 2D Airfoil Response

Non-

A critical part of studying the behavior of wings in ma-
neuver is the understanding of the wing’s aerodynamic re-
sponse to new conditions suddenly imposed. Representa-
sive of such response are, for the 2D case, the results of the
:lassical Wagner problem, illustrated for the low-amplitude
“.inear) case ip Figure 8(a). The net bound circulation on
the airfoil, [y + 'y, adjusts only gradually to the suddenly
.mposed change in angle-of-attack as represented by the
inmp in [o. The lift coefficient jumps to } its eventual
value and gradually adjusts. Note that the relaxation to
“he quasi-steady result, is very slow. On the Figures, time
s normalized t0 (}) (¢/Us).

The corresponding nonlinear (large-amplitude) case is il-
.iztrated in Figure 9(a). Note that the response is very
s.zm:lar to the linearized result, despite the relatively severe
ie7:rmation of the wake as illustrated in Figure 9(b). This
1cpears to be a result of the fact that the wing in each
:ase is adjusting to shed vorticity which is rather strongly
s:incentrated toward the far reaches of the wake, uitimately
several chord lengths downstream.

lustration of the airfoil’'s aerodynamic response to a
rudimentary but severe maneuver is illustrated in Figure
13. There, a sudden single-cycle sinusoidal angle of attack
vairiation of large amplitude is imposed and just as suddenly
s»:pped. The wake vorticity coagulates and begins roll-up
~:.thout significant net displacement from the plane of the
w7421l (Figure 10(a)). The Lift jumps quickly, and then leads
*he quasi-steady value into the negative lift region (Figure
1./0)). It then overshoots the recovery, plunges again, and

n.y very slowly recovers to the state before the maneuvers,
.ustrating a *history effect® for the 2D case suggestive of
*he phenomena discussed at the end of Section 4. During

10

TPls -P~¢ <

o R 2 TR g IO S e

Andh Sof Galh Sa b Aad MR Shiate)

the maneuver, from start to finish, the airfoil advances §
chord lengths in this example. Both “apparent mass”® ef-
fects and upwash associated with the developing wake play
vital roles in the net result.

The pitching moment for this example, though large in
amplitude, is essentially classical in response, except for the
relatively pronounced history effect a‘ter the maneuver is
complete (Figure 10(c)).

A number of additional examples of airfoil response to
imposed large-amplitude motions of various types are re-
ported in Ref. [1]. It is especially instructive, in addition
to the figures, to actually run the codes of (1] on-line, tak-
ing advantage of the almost instantaneous wake displays to
develop a sense of airfoil response and the reasons for it.
Several of these “dight” sessiona have been taped recently.
In the 3D case one can carry out similar on-line runs with
split-screen displays of the wing configuration, wake defor-
mations at various locations, and wing loading response.
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1. Particle Paths vs. Streakline. Formation of a Vortex Sheet.

[X]

. Wake Behind an Oscillating Airfoil.

3. Sketch of Wakes {rom a Delta Wing.
4. Typical Wake Traces. a) Non-Linear. b) Linear, [dealized

5. Wing in Maneuver. a) Wing and Wake Traces at Various Chordwise Locations. b) A Streak Surface, Starboard
Side, for given t.

6. Superposition Algorithm for Determining Bound Vorticity Necessary to Cancel Upwash at the Plate.
7. Choice of Cross-Flow Observation Planes. a) z ~ z Projection. b) z — y Projections and “Roll”®.
3. Airfoil Response to Low-amplitude Step Change in Attitude. a) Circulation and C; vs. Time. b) Wake Display.

9. Airfoil Response to Large Amplitude Step Change in Attitude. a) Circulation and C; vs. Time. b) Wake Display.

10. Airfoil Response to a Single Full-cycle Completed Imposed Oscillation. a) Wake Display. b) Lift and Circulation
ve. Quasi-steady Values. ¢} Moment Coefficient, with History Effect.
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Slender Wing Theory Including Regions of Embedded Total
Pressure Loss*

James E. McCune,! T. Sean Tavares,! Norman K.W. Lee,} and David Weissbein’

Department of Aeronautics and Astronautics
Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

An aerodynamic theory of the flow about slender delta
winge is described. The theory includes a treatment of
the self-consistent development of the vortex wake patterns
above the wing necessary to maintain smooth flow at the
wing edges. The paper focuses especially on the formation
within the wake of vortex “cores® as embedded regions of
total pressure loes, fed and maintained by umbilical vortex
sheets emanating from the wing edges. Criteria are devel-
oped for determining the growing sise and location of these
cores, as well as the distribution and strength of the vortic-
ity within them. In this paper, however, the possibility of
vortex breakup is omitted. The aerodynamic consequences
of the presence and evolution of the cores and the asso-
ciated wake structure are illustrated and discussed. It is
noted that wake history effects can have substantial influ-
ence on the distribution of normal force on the wing as well
as on its magnitude.

1 Introduction

The underlying assumption adopted in this work is that
at the Reynolds numbers of full-scale flight it should be
possible to advance our understanding of the aerodynamic
behavior of wings, even in severse maneuver, without nec-
essarily resorting to the full Navier-Stokes equations. This
classical notion envisions the flow past the wing as con-
sisting of large surrounding “outer® regions of essentially
inviscid flow in which are embedded “inner® flows, many
key features of which are viscous or viscous-related. These
embedded flows may include not only the usual boundary
layers and viscous wakes but also larger recirculating re-
gions (such as separation bubbles) as well as shed vortices
and vortex “streets® complete with their own inner “cores®.
The location, sise, and shape of the inner embedded flow

*This work was supported by the AFOSR under Grant Nr.
AFOSR-86-157. Barlier phases of the research were also sup-
ported by NASA Langley under Grant Nr. NAG-1-658.

"Professor, Associute Fellow, AIAA

'Research Assistant, Member. AIAA

YResenrch Assistant

'Member, AlAA. Present address: Northrop Aircraft
I Northrop Ave., Dept. 3812/82, Hawthorne, California 90250

regions is determined interactively with the larger-scale in-
viscid flow, but their very existence depends on the pres-
ence of viscous action occurring somewhere, especially at
the various interfaces with the outer flow.

To the extent that such an hypothesis is viable one
can contemplate an analytic approach, albeit computer-
assisted, to the study of non-linear, unsteady wing aerody-
namics. In many situations the outer flow will be potential;
even the embedded flow regions, when of large enough scale,
may be essentially inviscid within, although they must then
be surrounded by viscous layers or “sheaths® separating
them from the outer (potential) low. A common feature
shared among the embedded flow regions, however, is that
they will not be irrotational; reduced total pressure, dis-
tributed variously over the inner regions, will be present.
In addition, when any of the embedded flows detach from
the wing surface a key part of the aerodynamic problem is
to determine their evolution, in sise, shape and location, as
affected both by convection in and viscous interaction with
the surrounding flows. When compressibility is important,
the possible formation of shocks as well as the propagation
of acoustic disturbances can also affect the interplay of the
inner and outer flows. In this paper, however, we limit
ourselves to the incompressible case.

If low models of wing aerodynamics are constructed
along these lines, fully three-dimensional analytic studies of
the problem can be carried out and the procedure is essen-
tially classical. Given a wing’s geometry and attitude and
ite flight status or sequence, the precise boundary condi-
tions needed to determine the low can be written down and
classical potential flow techniques applied. The inner flows
can be treated using a variety of approximate treatments.
The algebraic complexities in the 3D case are formidable,
however, and (at least at the outset) may serve only to
obscure the progress we wish to make with an analytic or
quasi-analytic approach. In this paper, therefore, we adopt
the ideas of the slender wing theory of R.T. Jones [1] as
a means of illustrating the proposed techniques in a some-
what simplified framework. Jones’ quasi-2D treatment for
low aspect-ratio wings is a remarkably powerful and insight-
ful tool which historically has also provided a framework for
understanding the results and trends of more exact numer-
ical studies.

Advances beyond Jones’ theory, especially as applied to
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_~';: ’ delta wings, began with the recognition by many authors to localised separation of the wing boundary layers, and
:‘ {2}, [3], 4], [5] of the need for a vortex wake structure  the phenomena of vortex breakup, are explicitly omitted.
'_f.-', above the suction surface of the wing. (Fig. 1) The role

In the course of the non-linear evolution of the (ideal,
inviscid) vortex-sheet patterns as in [6], the wakes gener-
ally tend to “coagulate,” with the vortex traces spiralling
in on themselves and ®rolling up.® (See Fig. 2) If this is

of this wake pattern, somewhat idealised here in the fig-
ure, is to provide means of establishing emoother flow (a
“Kutta condition™) at the wing edges than that arising in

_ the ?:‘m:ld'i’o'.‘“ treatment. The ru‘ultm.:hmo:;ﬁﬂcatmn: the case and the Reynolds number is finite (no matter how
-:". provide predictions more commensurate with real flows 2 large), viscous dissipation and smearing out of the vorticity

s k)

large but finite Reynolda Nr. One can view such a dou-
e ble wake structure as the result of a form of leading-edge
separation occurring along each of the swept edges.

must become important at some stage as the contortions
of the ideal wake traces become more and more intricate.
The result, as sketched in Fig. 2, is the creation of a re-
' j In this paper we discuss the self-consistent development gion of smeared-out vorticity in the “core® of sach wake.
of the wake pattern above a low aspect-ratio delta wing at  (Multiple cores can also occur.) In these core regions, a
) modest angle of attack in the context of its effect on slender  corresponding embedded region of total pressure deficit is
_: wing theory. In particular, we undertake to include in our created. Both numerical and experimental evidence exists

} "; treatment the presence of embedded cores of distributed for such embedded regions; see, for example, references |7],
vorticity, or regions of reduced total pressure, near the end (8], 9], (10|, [11].

\ of each wake trace as illustrated in Fig. 2. The physical

ror reasons for the presence of these embedded regions are dis-

oy cussed briefly in the next Section. We will find in later Sec- 2:2 Coordinate System: A ‘Time-Anal-
r:- tions that the effect of embedded low-total-pressure regions ogy’ Approach

:-.‘ on the development along the wing of various low quanti-

N ties, including static pressure, requires careful attention. A Although the wakes may partially roll up into “cores”
L J self-consistent procedure for determining these parameters as discussed above, we still require a careful treatment of
. in the slender-wing limit is developed in this paper and those portions of the wake which remain thin and sheet-like,
- compared with the classical case of purely potential flow.  with negligible total pressure loss across them. For exam-
In addition, we derive criteria for determining the sise and  ple, the strength of the cores must change as ‘hey move
\ evolution of the vortex cores. However, in this paper we do  downstream over the wing, not least because of chordwise
not consider the possibility of vortex breakup. Some of our  variations in wing geometry. Thus, sheet-like portions of
~ recent work on that subject will be reported elsewhere. each wake can be regarded as *umbilicals® feeding each

P core (see Figures), and to these the analysis of [6] applies
-:: almost without change.

o 2 Wake Formation in Potential Flow

In the present paper, however, we wish to take advan-
tage of a form of the time-analogy approach inherent in the
2.1 Development of Wakes with Total classical Jones-Munk treatment of slender wings and bod-

Pressure Loss ies. (1], (12] For simplicity in the present discussion we take
the wing to be a delta of planar geometry and in steady mo-

-

,‘ OO
X A . e N

O In Reference (8] the self-consistent development of vor-  tion at small, constant angle of attack, omitting the radical

:;‘_- tex patterns above slender delta wings in large-amplitude ~ maneuvers discussed in (6].

- unsteady motion is discussed from the point of view of an- Jones suggested an observation coordinate frame fixed in
o alysing the cross-flow pattern at each chordwise station. In  tp, 4t atmosphere through which the wing being observed
.’ that w.ork. however, the wakes are treated id“u_Yr asifthey  penetrates during its flight. Extending the ideas of Munk,
% were simply vortex sheets of complex shape, with no total  jopee pointed out that if the wing was slender enough (i.e.,
; j: - pressure loss in the flow. The focus there is on determining  f |ow aspect ratio) an observer fixed in this frame would
':.:, interactively the shapes of the two required wakes as viewed 400 in a “cross-flow plane” oriented normal to wing surface,
e in successive cross-flow planes. The distribution of vortic-  ; quasi-2D, but unsteady, fow pattern. The unsteadiness
oy ity along them is determined s as to maintain smooth low  would arise, for example, because the observer would see,

o along the wing leading edges. The method extends the clas- ;5 the cross-flow plane, a wing trace *growing” in span ac-
. @, sical literature (2}, (3], [4], [5] s0 a8 to allow for severe wing  cording to
\ :‘.' motion during maneuver. Non-linear self-consistent vortex
. :._ wake evt?hmon is ozxphcnly included. b(t) = ?: = Uy, cos a?—t s Us @ (2.1

Ry As pointed out in that paper, such a model of the wake

: structure is somewhat too idealised, in that the develop- In addition, in Jones’ scheme, the wing would appear to be
' SY ment during wake roll up of vortex cores at finite Reynolds  plunging at constant rate U, sina ~ Uxa.

. n w -

) pumber, i endad oo f STt 0 Yy e i i 5, w it i i apr e o
rences of secondary separation “bubbles,” which arise due “time-analogy v1e‘w, wm-x the .exceptxon th,“ we “atop

the apparent plunging by including a countering cross-flow
(-2
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velocity (from the left, in Fig. 3) of magnitude U sina.
Thus, in the cross-flow observation plane, the origin of the
z — y frame remains fixed on the wing center line as the
wing passes through.

It is in describing the evolution of the two wake traces
that the time analogy approach has its greatest appeal. In
the spirit of Jones’ low aspect-ratio-limit treatment, the po-
tential low solution in the observation plane at each instant
represents an instantaneous solution of Laplace’s Equation
corresponding to the boundary conditions of the moment.
But these now include not only the apparently growing wing
trace, but also the developing wakes (or wake traces) eme-
nating from the wing edges. Moreover, at any instant ¢ the
outer portions of each wake trace, including and approach-
ing the cores, carry with them the “history® of the wing’s
penetration of our observation plane; the vorticity in those
parts of the wake were generated at times previous to t.

When the wing is in steady flight at angle of attack a, we
can reiate time variations seen in the present observation
frame to chordwise variations referred to in [6] through the
transform

3 2 3
3 a,cotab—sz,,a (2.2)

2.3 Convection of Ideal Wakes

The mathematical description of the non-linear convec-
tion and evolution of ideal wakes is contained in Reference
6] and will not be repeated here. However, a synopsis of
the general approach is useful.

In formulating the ideal wake model the only concession
to the existence of viscous-related phenomena is to enforce
a Kutta condition - i.e., emooth flow - at each edge of the
wing trace. Once an element of circulation has been shed, in
that model, the wake is treated in the inviscid limit. Thus
each increment of vorticity is convected in accordance with
the inviscid Helmholts relation.

Moreover, the ideal treatment requires that each wake
trace be *force-free® along its entire length. The wake vor-
ticity then convects at the local low velocity. In the cross-
flow plane this convection velocity at any point on the wakes
is the sum of the cross-flow component of the free stream
velocity, Ue sin a, and the *induced” velocities associated
with all the neighboring vorticity on the wing trace and in
the port and starboard wakes.

Owing to the wake history, each element of a specified
wake trace (i.e., port or starboard) can be identified accord-
ing to the time it emanated from the wing edge. Denoting
this time as X, the two wake traces at each instant t are
streaklines along which X varies from O at the far reaches
of the wake trace to ¢ at the wing trace ends. (See Fig. 4)
Hence the incremental circulation, 4, can be written

ar = 9L 43 (2.3)
&

We make use of Eq. (2.3) in writing out the “wake-
history® integrals below. In [6] it is shown that X is a
“purely-convected” quantity, acting as a label for a given
circulation element in the wake.

2.4 Determining the Vortex Strength Dis-
tribution in Ideal Wakes

The net circulation in the cross flow plane is zero for all
times by Kelvin’s Theorem;

I!S‘I'DD + I\’ORT + FTRAC. =0. (2.4)

where [TR4C% iy the cross-flow circulation of the wing
trace, and ['*T22, [FORT refer to the starboard and port
wake traces. From the symmetry of the problem with sero
roll angle we see that

[$T8D _ _[PORT
PTRACI =0. (25)

(See Fig. 4) (For cases involving asymmetric maneuver
[TRAS® must be worked out, and will not generally vanish.)

In complex-variable notation the quasi-2D cross-flow ve-
locity associated with the wakes is, with Z =z + sy

Uwake — Wwake = Wwake(Z)

‘ i
= ;T. {/0 dx {Z—_T‘;—m} (2.6)
. o3TED
+/0 dx {-272‘:;,7}} .

In writing Eq. (2.6) we have made use of Eq. (2.3). In
addition, ZF°"*" (1) and Z)T2P(X) are the instantaneous
complex locations in the cross flow plane (z,y) of the vor-

ticity elements in the port and starboard wake traces, re-
spectively.

For our chosen reference frame, the boundary condition
of no flow through the wing trace is written
b b

<y<

=0 —3sysg.

Ulwing trace z2=0. (2.7)
In Eq. (2.7) y is the instantaneous spanwise coordinate, and

3 is the semispan at the specified t. (Fig. 4).

We define the complex velocity Wy = Uy — 1V, to be that
which would occur if there were no wakes. In that case,
imposition of boundary condition Eq. (2.7) in the presence
of the cross flow Uy sin a leads to a discontinuous part of
the velocity at the wing trace, AV):

AVoltrace = “2Uxsina (2.8)

This is Jones’ classical result in the limit of small angle of
attack, sina =~ a. [t is also singular at the wing edges.
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Next, we introduce the complex velocity W, = U, -« V)
to represent the flow fleld associated with the additional
vorticity at the wing trace needed to continue to satisfy
Eq. (2.7) in the presence of W, ;o as given by Eq. (32.6).
Using the theory of conjugate functions we find

2tan g8 ¥ dr ('Uwake cos r)
= . 9
AViltrace f cost —cos (29)
where AV, is the jump in V) at the wing trace. In Eq.
(2.10) the ®angle variable® J is
b
=3 sin 8 (2.10)

with § being § and —f at the port and starboard wing
edges, respectively.

The wing-edge singularities in these additional *wake-
induced” terms must exactly cancel the singularities as
given in Eq. (2.8) at both edges of the wing if the Kutta-
conditions are to be satisfied.

In Eq. (2.9) Uy, can be written down in terms of the
wake integrals in (2.6). Cancellatnon of the singularities at
both wing edges (y = +3, —3) then requires

Ugsina =

drPORT

. ¢
Re'; /d:\- _d)
2 2
(1] (Z'ronr) +bT

(2.11)

. L 9TAD
+/d:\. —_——A
3 »

° (23722) + 8

This equation provides us with the means to calculate
the rate at which vorticity is shed from the wing edges
while satisfying both Kutta conditions. Its derivation is
analogous to that used by Wagner (13| in developing an
integral equation for the wake vorticity in unsteady airfoil
problems. For this reason we refer to Eq. (2.11) as the
“Cross Flow Wagner Integral Equation®.

The left hand side of Eq. (2.11) is known, being sim-
ply the cross-low component of the free stream.' Opera-
tionally, on the computer the use of Eq. (2.11) is relatively
straightforward, except for finding the initial incremental
vortex elements shed at the instant the point of the delta
pierces the cross flow plane (i.e., at ¢ = 0). Difficulties
arise there since the kernel of the rAs is singular. An effec-
tive method for treating this critical first moment can be
developed in analogy with the method given in [14]. After
the procedure has been properly started it proceeds without
further dificulty. Once the strength of a vortex element has
been determined by Eq. (2.11) at the instant it leaves the

'The (he of Eq. {2.11) is reslly a step function, being tero
for t < O and Uy sin a thereafter. For the present case, if a is
limited to small angles of attack, Ug sina s Upa.
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wing trace, that strength, as measured by its incremental
circulation, remains unchanged as the element convects in
the wake. Throughout the evolution of the wake we “track”®
the locations of the elements by the method of (6] and de-
velop a "history” of the wake vorticity density. Thus all the
information needed to carry out the wake integrations (such
as in Eq. (2.11)) is present except for that part which de-
pends on the elements currently being shed into each wake.
Eq. (2.11) then determines these additional entries so that
the edge flow remains smooth.

2.5 Extension of the Cross-Flow Wagner
Integral Equation to Flows with Dis-
tributed Vorticity

Eq. (2.11) can be reformulated to incorporate wakes in
which there are regions of smeared out vorticity as well as
“ideal® regions. As an intermediate step in this reformula-
tion we simply write the expression for the wake “induced”
velocity components in terms of integrals taken over the in-
stantaneous lengths of the umbilicals (i.e., those portions of
the wake which are thin and sheetlike) and over the areas
of the vortical cores. (See Fig. 5) Along the umbilicals the
incremental circulation is written

dl‘-gdl

(3.12)
where d¢ is the differential length measured along the in-
stantaneous trace. In the cores the incremental circulation
is given by

dl = QdA (2.13)

where (] is the vorticity density and dA the differential area.
(See Fig. 5) Recalling that the Biot-Savart law applies as
well to distributed vortical regions we obtain the “induc-
tion® equation

Wwake = Uwake ~ Wwake =

o PORT ar3TAD
1 gl — 4L ___ % 4 ded —___
2x LPORT Z - Z7onrT LsTap Z-2;7e°P
umb umb

QPORT QST.D
*/poff{z—z:""}*/"fi,‘{z—z."”} (2.14)
Acore Acore

where “L, 1" and ®Acore” represent integrations along
the umbilicals and over the areas of the cores respectively.

Since the shapes and strengths of the umbilicals are not
known a priori we again use the concept of history integrals
and ideal wake tracking and obtain:

Wwake = Uwake ~ Wwake =
i ¢ a-PORl' N aSTDD
T dX
27 /; dx Z-2ZrORT +/;-. dA{Z Z’""
junct junct

nPORT OSTBD
T P R R P R
Acore Acore
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The lower limit of the history integrals X'unct denotes
the circulation element of the ends of the umbilicals at the
juncture with the cores while the upper limit ¢ pertains to
the vorticity currently entering the wake at the wing edges.
The value of xj“d increases in time as vorticity from the
umbilicals *feed” the cores, and must be determined. (See
§5).

Applying the boundary condition of no flow through the

wing trace Eq. (2.7), and enforcing the Kutta conditions
we obtain in a manner analogous to that of § 2.4:

Uwsina =
a-PORT

. ¢
t -—

Yunct (2ronry? 4+ b—:'
N a\!f.D
+ dad ——4
Nuset | \(2imeey 4 2

OPOR!'
of Al
AZore (Zrorm)?+ 82

QST!D

+ / Al (2.16)
Adote” (22722)'+ 42

Denoting the net circulation in the core as [core, and that
in the umbilical as I’ 1}, the total circulation in the wake
is written
Fwake = [core + Ty, - (2.17)
As pointed out in the Introduction the formation of em-
bedded vortical regions is dependent on the action of vis-
cosity no matter how large the Reynolds number. [n those
regions the ideal wake tracking method is no longer directly
applicable. Therefore we need to size and locate each core
and determine its vorticity distribution before the extended
integral equation Eq. (2.18) can be helpful to us. We show
in Section 6 that one must consider the role of viscous in-
teraction between the cores and surrounding flow and also
include criteria to determine the rate at which vorticity is
removed from the umbilical. A sample calculation, includ-
ing the sizsing of the cores, is described there.

3 Slender Wing Expansion

3.1 Ordering in the Slenderness Parame-
ter: Formal Procedure,

Suppose we fix ourselves in a reference {frame defined by
32,8y, £+ where ¢, and ¢, are the unit vectors in the
cross-flow plane depicted in Fig. 3,and 2, =2, x ¢, is
aligned with the center-line of the wing. In this reference
frame the wing appears to travel in the -z-direction at a
speed Uy cosax. In addition there is the steady cross-flow,
Us 8in a described above.

We write the velocity vector ¢ in the form
g, =y 1+twl, (3.1)

where
yi=(uv)=ul,+vé, (3.2)

are the cartesian velocity components in the cross-flow
plane. Similarly, if § = curl g, is the vorticity,

Q = ﬂ.,{. + ‘lJ. (33)
where
8v Bu 8 a
v == (o -3 J8si ViS g+, 5
iXxXyL Qv{ (az ay),é, VJ. i 3z+£"ay
dw v _ 9y dw
QL_(Q’,Q’),O'_W-E,Q’-E—E(3-4)

We next introduce the slenderness parameter, ¢, charac-
terising the wing aspect ratio, /R. We can then write

| 5] /1941 =0(e). (3.5)

In the light of Eq. (3.5), the order of magnitude ¢! vari-
ous terms in Eqs. (3.1) through (3.4) can be worked out.
Based on the time-analogy approach discussed in Section
2.2, chordwise variations are related to time variations as
in Eq. (2.2). Eq. (3.5) is then equivalent to

L.}
3]/ W=ViD) = cosao(e)
= 0(e) (3.8)
since Us i8 of order unity. Note also that div @ =0, e
an, _
97 = Vi@ (3.7
and consequently
18 4l/19: =0(e) . (3.8)

Eqs. (3.4}, (3.5) and (3.8) then imply

2 =0(e) . (3.9)
fvi]

The above corresponds to the standard procedure show-
ing how slenderness is employed to make approximations
for low AR wings; the technique is used throughout this
paper.

3.2 Flow Quantities in the Cross-Flow
Plane Through First Order.

§ 3.1 establishes a formal procedure for calculating the
magnitude of various flow quantities under the slenderness
approximation. One begins by considering the cross-flow
plane. In this section we make use of slenderness to derive
the basic governing equations in that plane, including first-
order “time”-variations in the time-analogy.
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The continuity equation in incompreesibie flow is

v ‘g, =0. (3.10)
Since 42 = 0(¢*) Eq. (3.10) reduces to
8y dv
= . =0. 3.
3. 3y 3y =V,-g1=0 (3.11)

through first order in €. This can be satisfied at any instant
using a streamfunction ¥(z,y;t) such that

vi=(vs,9,) =V, ¢ x ¢, (3.12)

to the required order. (Note that 9 | = Unsina ¢. m~
Usag s far away from the wing trace in the cross-flow
plane.) The z-component of the vorticity is then, to the
same order,

0.=-Viy. (3.13)

The unexpanded momentum equation in the “inviscid®
regions described in the Introduction can be written as
o, 1

+y Vg =--Vp. 3.
Again using slenderness,
order,

Eq. (3.14) becomes, through first

—L+g,_;_ VL}LJ_--—VLP (3.15)

Here, “p® is the (constant) fluid density and “p” the static
pressure. Eq. (3.15) can also be written as (15|

gg'—-t»'u_xﬂ £,

at
1 vl
= —;VJ_ (p+PT) (3.16)
or Py 1
—Lat* +0VLg=-2VLP, (3.17)

through first order in ¢. Here, v, is the magnitude of y ,
and P, =p+op (:,:n.) is the cross-low “total® pressure in
the incompressible limit, through first order in e.

When the flow is irrotational, as in the ®outer® flows
discussed in § 1, Eq. (3.17) can be treated in the usual
way. Replacing v 1 by V. ¢ and noting 3, = 0, we have

A d

T ";VJ.P.LO (3.18)
or P
-ﬂ 9¢ QLOO) = const (3.19)
I 3t I

for irrotational flow. Note that in this frame of reference,
therefore, the quantity P., is discontinuous wherever ¢ or
%f is discontinuous, as on the umbilical vortex sheets in the
wakes and on the wing trace. Application of Eq. (3.19) on
both sides of the umbilical at the juncture (Fig. 6) yields

AP.LO = PIQ —PIQ - 3 - 4ty = 8rCOrQ
oz o do - J(gT %)= T2 (3190)

YT T W W e W v

The usefulness of this equation will be seen in § 5.

Utilising Eq. (3.11), we also have V7 ¢ = 0, defining the
usual potential problem in the cross-flow plane, (1], {12].

By contrast, in the ®inner® vortical embedded regions
(see § 1), even if they are essentially inviscid, we must adopt
a somewhat different approach. Using Eq. (3.12), we can
rewrite Eq. (3.17) in this case as

-lvip, =09V (3) x2.

3 (3.20)

In exploring how to use this relation, it is helpful to note
its implications in seroth order: if

Py, = PP +0(e)
Q. = 0% +0(e)

then, since T%T%% = 0(e)
a0V, ¢ = _%vmﬂ’ :

This implies Pi? = Pi?(d?) to seroth order, and conse-
quently ol = ﬂ(,o’(i:) as well. In fact,
1

A(¥) = =2 Pl,(¥) (3.31)

can be taken as a lowest-order characteristic feature of

an embedded vortical region. It implies that the “total

pressure®, P.,, tends to vary only across (instantaneous)

streamlines, but is constant along them, corresponding to

the Bernoulli result in lowest order. In this order, one could
also determine ¢ by solving

vie=-0"(y) (3.21a)

with appropriate boundary or matching conditions, pro-
vided one knew 028 (¢). (See [16] and {17] and § 4).

The presence of the “perturbation® term involving %-f- in
Eq. (3.20), however, can have a profound influence on this
conclusion, especially for recirculating embedded flows. For
such flows the dominant part of V (—"—), particularly if (1,
is changing locally in time, is itself in the V  y-direction.
This, in turn, implies first-order variation of P., along
“streamlines”. But if the flow is in fact recirculating, PL,
must be cyclic (see § 4), requiring either that —1 =0 in
the embedded 1 region, or that an appropriate cychc average
of 'A% around the recirculation path must vanish. Phys-
ically, for recirculating embedded regions large enough to
be essentially inviscid, this observation corresponds to the
statement that the local angular momentum cannot change
other than by transport or storage of that quantity in a
given control volume. (Recall that lines of constant ¢, as
treated here, are “instantaneous streamlines” only: through
first order there is generally a lux across them.)

To illustrate in a simple example, we consider a circular

embedded region with solid-body flow, v, = 0, vg = 8=,

{1, = wo(t), where r is measured from the epicenter of the
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5: convecting core. In that case, v = —!-ﬂ"—’ + ¥o(t), and ﬂ(.o)(\b) in (§ 3.2).) The O(E‘;) and O(¢) terms can be
;.*:, V.L%% o~ (g;u) ¢, where wo = ‘_:‘n Since ¢, x ¢, = accounted for by writing

R —¢ ¢, we recover from Eq. (3.20
- 2 Eq. (3:30) Qu(9,) = F(¥) + /(9,0) (43)
1 wor wor . . .
AN - ;v.LP.Lo =-S4rt —2. (3.22)  where ¢ is a measure of the distance along a streamline, and
SR J is of higher order than F. With this substitution for (1,,
'_:.—‘_ In this case, for an embedded, recirculating circular flow  Eq. (4.2) becomes
:-:.: we must conclude that Wwo = 0, since %’-‘,‘-ﬂ- = 0. For such 8F
: . a simple embedded flow, therefore, (see § 5) we would find — 4y -Vf= vl (4.4)
\ 3 {1 = constant, independent of time and space throughout
oy the confined region, even though that confined region itself  correct to 0( ;) and 0(¢). Eq. (4.4) can be rewritten as
o may grow in time.
.o 3
In the general case, application of the cyclic constraints {v.y u;—f =vViF-F af (4.5)
-::.- ideas discussed in § 4 provides information on the cross-
- - streamline variation of P;,. For the circular-flow case, as When the streamlines (lines of constant ¥) “connect® to
( in Eq. (3.22), the radial variation of P, is determined, ;pgniey or to any region of known flow conditions, PL,(#¥)
Pars provided we can determine wo. In either case, on matching . 4 hence Q3(¢) (= F(v)) are determined. Solution of Eq.
: the inner ?m.h the outer flow, one determines the static (3.13) with appropriate boundary conditions then proceeds
- - pressure within the core as well. as usual and determines the low to lowest order.
‘ " On the other hand, for an embedded region of distributed
.. 4 Embedded Cross - Flow Regions: vorticity, the streamlines are not connected to an outer,
L . . known region, and the above standard treatment is not ap-
= Cydlc Con“ralnts’ and The Sheath plicable. In such regions, since the instantaneous stream-
o Model lines close on themselves to lowest order, a different re-
a0 quirement must be met which will turn out to determine
4.1 Cyclic Constraint: Low-Shear-Stress ‘11‘: §°:l- This nft‘; ":“i."m“:l states ‘hl“v for purposes °;
:z physical continuity, the integral over a closed streamline o
: Recirculating Regions the variation of any property along that particular stream-
a . .
! N Determining the distribution of the vorticity and the cor- gne m‘;j” v;,n;sh.tg °the1ri wordlt, tl?e'epbedi'e:i ﬂtow has ;)o
._~‘. responding total pressure loss within embedded flow re- .e‘cyc .c. en this cyclic constraint is app o f(¢,0),
M . . . . . it implies
Ry quires considerations special to the recirculatory nature of 3f(%, )
O the flows within them [16], [17]. Introduction of *cyclic fdt T— =0 (4.6)
o~ constraints® at finite Reynolds number to account for the

recirculating feature of the streamlines in the presence of Wwhere the integral is to be taken along closed streamlines.

U

d

R viscosity is a key to determining f1,(¢) within the cores. Eqs. (4.5) and (4.6) then yield
..:: The following illustrates the construction of typical cyclic
.-, constraint conditions. f’ VJ_F dt —F 32 =0 (4.7)
‘G . o . vl {V.iY vl |Vl
o The full Helmholts equation which includes viscous ef-
i{: fects (sometimes called the dissipative Helmholts equation)  Defining ds, = d¢/|V.¢|, T'(¢) = fvldu, r(w)
is given by § ds¢/vy and also noting VAF = F'Viy + F" |V, y|?
pr _& s -FF' +viF", Eq. (4.7) becomea
v +9-VQ =0Q -Vg +0V°Q (4.1} . .6!
SR " 8¢
‘, Using the slenderness approximation, the z-component of v [PF fFF] (f ) (4.8)
Eq. (4.1) becomes
‘. in the low-shear-stress region of the embedded flow in the
: _,",' 8;:. +o1 Vil =0Via, +0(e) (4.2) cross-flow plane.
. Interpretatlon of Eq. (4.8) through first order in ¢, i.e.,
R The first two terms on the left-hand side of (4.2) are of including the 3’- term, provides additional information.
: order ¢ and unity respectively; and the dissipation term  This term is equivalent to the 3‘:- term discussed in con-
, on the right-band side is of O(I‘-.-), when Re being the nection with the momentum balance in Eq. (3.20) for
a Reynolds number. One solution to Eq. (4.2) is 1, = 0, embedded fows, which we recognised there as being as-
-.'-' representing potential low. When the flow is rotational and  sociated with the flux of angular momentum across the
'.'f-" in the absence of strong shear stress, {1, = F(y) satisfles  instantaneous recirculating streamlines, ¥ = const. It can
- Eq. {4.2) to seroth order. (Note F(y) is equivalent to  be argued, in fact, that in large Reynolds number (low-
::.: shear-stress) regions the integrated %f- term of Eq. (4.8),
e
pra
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:‘ being O(¢), is inherently much larger than the term propor-  work a model for the leading edge separation and reattach-
e tion to *v*, which is O(h‘-;) In that case we must impose  ment over a two-dimensional plate is developed. The study

the separate constraint
dl(a
e F f _i =0.
, vy

Unless F'(¢) is strictly sero this implies, as in § 3, that

utilises Eq. (4.8b) to deduce the form of vorticity in the
embedded core regions. The mode! for the viscous sheath
consists of a shear layer made up of two sub-layers. (See
Fig. 7) The inner sublayer, being in direct contact with the
embedded region, consiste of recirculating flow that incoi-

{4.82)

any part of 4 which is not simply periodic in the cyclic
variable s, must vanish. Again, for simple core shapes,
one conciudes that the mean vorticity density tends to be
time independent in embedded recirculatory regions. Fi-
nally, note that when Eq. (4.8a) applies separately, the
remaining cyclic constraint is in the form originally treated
by Batchelor:

U[FF”—TFF"]:O,

(4.8b)

corresponding to a strictly two-dimensional embedded vor-
tical flow with recirculating streamlines.

For the simple core geometries that tend to be observed
the practical solution of Eq. (4.8b) is essentially F = con-
stant, {16], {17]. Only very weak variation about this condi-
tion can be found for reasonable distributions of I'(¥) and
r(¢) in such geometries. However, the conclusion F = con-
stant, or essentially so, does not mean that the core flow
is circular or "solid-body”. In [17], for example, a range of
elliptical embedded vortical regions, together with detailed
variations of F about its dominant constant value, were
studied. But the primary feature of these embedded re-
gions remains that F is essentially constant in epace in the
low-shear-stress regime. Our conclusions from Eq. (4.8a)
then provide the additional information that F is constant
in time as well.

4.2 The Sheath Model and Cyclic Con-
straints in General

In the absence of any viscosity-dominated regions what-
soever, Kelvin’s theorem would not allow a vortical but
essentially inviscid core to be embedded in an irrotational
flow. This then implies, under the high Re assumption, the
presence of a viscous sheath surrounding the core in order
to impart vorticity to the flow entrained into the core.

Using this sheath model we can compiete the determi-
nation of the total pressure distribution in the cross-flow
plane. On account of Eqs. (3.19) and (3.20), a difference
in the evolution of total pressure, P.,, inside and outside

porates the boundary layer on the upper-side of the plate.
In contrast the outer sub-layer, of which a portion is the
boundary layer on the underside of the plate, is bounded
by the irrotational outer flow.

In this sheath model the outer sub-layer is considered
to drive the inner sub-layer via shear stress. One impor-
tant criterion emerging from this two-layer model is that, to
maintain its recirculating nature, the inner sub-layer flow
must be given enough energy to overcome viscous dissipa-
tion on the plate. In other words, the gain in total pressure
of a fluid particle travelling from A through B to C must
turn out to exactly balance the loss in the same quantity
as the particle completes the cycle by moving from C back
to A. This corresponds to an application of the general-
ized cyclic constraint idea. It is used together with the fact
that the static pressure along the outer edge of the sheath
is governed by the outer flow to deduce the sheath profile
and its peripheral static pressure distribution via an iter-
ative procedure. Figs. 8 and 9 show results obtained for
two different Reynolds numbers: streamlines for the exter-
nal flow are presented in (a) and those for the embedded
region in (b). Such results provide a framework from which
techniques developed so far can be extended to include cor-
rections for unsteady effects. But in addition, as illustrated
in § 5, these ideas provide one of the final links necessary
to determine the vortex core evolution.

5 Closure of the Aerodynamic Prob-
lem with an Embedded Circular
Core

This section illustrates how one can systematically em-
ploy the techniques developed in the previous sections to
determine the flow in an embedded region based on a sim-
ple, but physically revealing model. In particular the role
of interaction between the umbilical and viscous sheath is
clearly demonstrated. The model consists of a strictly cir-
cular core, with a convective epicenter and with a spatially
constant, time-invariant vorticity density wo. This vorticity

the core is inevitable. The sheath plays the role of redis-
tributing Py, at the core edges, thus smoothing out any
otherwise forbidden “jumps® in P,,. Moreover, the length
around the perimeter of the cores needed for the viscous ac-
tion to provide a specified change of P,, grows with some
~ power of the Reynolds number [17]. This fact, combined
with the required sheet strengths of the umbilicals, will be
used in § 5 to determine the core sises as they develop.

distribution is consistent with the results of § 4. A “core”
can be said to be present when the structure of a portion
of the wake becomes 80 rolled up as to form a spiral with
spacing between successive turns which is comparable to
that of an appropriate diffusion thickness of the umbilical
sheet feeding it.

ol
R P S

. s

Using a simple estimate for the influence of viscosity on
the umbilical sheet we find that each circulation element
has a thickness which develops as

6= 4Sur

An example involving both the application of Batche-
lor’s cyclic constraint and the redistribution of total pres-
sure by the viscous sheaths is illustrated in {17]. In that

(5.1)
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where v is the kinematic viscosity of the Suid and r is the
“drift time” associated with that particular v-1ke element.
It follows from (5.1) that § increases monotonically along
the umbilical from sero thickness at the wing edge, to a
maximum at the point where the umbilical joins the viscous
sheath surrounding the core. The drift time at this point
is Nupet = ¢ - Ajunct (§ 2). Alternatively (5.1) can be

rewritten
6= —, /T0 (5.16)

Junct

Sunct = \/—- (5.1%)

where R, is the Reynolds number based on the wing chord

and

length, R,, = —ﬂm, and T, is the characteristic time
of the unsteady crossflow problem Ty = m

Having introduced the concept of a diffusion thickness,
we proceed to establish 3 “cut-off® criterion for determin-
ing the core formation. We first approximate the rolled-up
portion of the ideal wake by a spiral defined by

L
o) = 3= (5.2)
where r(8) is the distance from the center of the spiral at
angle 8, and ro is a constant. Denoting the number of
encirclements about the spiral centre by NV, the relation

ry = Nfo (53)

is obtained for N >> 1. We can now seek a relation be-
tween ro and 5junct with the aim of establishing the cut-off
criterion for the core; that is, determining where and when
to replace the ideal wake by an equivalent vortical core. We
choose

fo = 6junct (5.4)
since in that case one can no longer ignore the effects re-
sulting from the diffusion of vorticity among the vortex el-
ements in the contorted wake region, i.e., the core becomes
smeared out and diffused.

Next, recall from § 3 that once a circular core is estab-
lished at some initial stage, it will have a spatially-constant,
time-invariant vorticity, wo. The drift time can now be em-
ployed to formulate

A7 =t = torm ~ Tunet

= ——— D (55

where {5, is the time when the core first appears; Ny,
corresponds to N at ¢t = tg,.. Recall that n, /. is the
drift time associated with the vortex element a{ the umbil-
ical/core juncture at time t. Eqs. (5.3), (5.4), (5.5) can be
combined with Ty and R,, to give

et )
Tjunct ~ Tjunct ‘form"' Nme

- (u)ﬂ

(5.6)

Additional information relating %ypcts wo and ry caa in
principle be obtained from a sheath model like that of Ref.
{17). However in this context it suffices to adopt an even
simpler model in which the sheath is taken to be of constant
thickness equal to that of the umbilical at Tuncture- In this
case the total pressure loss around the perimeter of the core
is given by

_Apo__

At (5.7)
14

junct

where U, is the velocity at the edge of the core U, = 1'-“,—"',
and Al is the perimeter of the core, Al = 2xr,. Recalling
from Section (3.2) that the total pressure loss around the
core is equal to the rate of change of core circulation, and

that for a solid body core,
Tcore = ¥ wo 73 , (5.8)
we finally obtain

drs _ s

— = (5.9)
dt 32 Bunct

In the long run, t >> ("‘fonn + :—:Nfom). Eq. (5.6)

becomes
4 () = -t YRVT (5.10)
Tjunct ("junct - ) T e Wo ! ’

the unknown parameters being Tuncts 7 and wo.

Inspection of Eq. (5.10) reveals two limits of the behavior
of Tunct which give important insight into the rate of core
growth The first is the one for which

Tunct M ¢ - (5.11)

Thie is the limjt of a small or very slowly growing core. In
this case, using (5.9) the core grows asymptotically as

Py ~

L (5.12)

¢

The second limit illustrates the case in which the core is
entraining wake vorticity as fast as the umbilical can supply
it. For sufficiently large times,

R..
Nupet ~ 73 (5.13)

and the core grows according to

fb ~ __Uo t* . (51‘)

VR,

Eq. (2.16) allows one to express at apy instant the total
circulation of the vortex elements lying between any loca-
tion along the wake and the free end of the wake as a func-
tion of the drift time associated with the element at that
particular location. Hence there exists a one-to-one corre-
spondence between [core and n Tunct: Eliminating wo from
Eqs. (5.8) and (5.10) then gives ry as a function of funct-
Such a relation between r, and n together with Eq.

Junct’
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(5.9), finally determines n

Juncs and ry. As a result [core
and wo are determined.

The analysis can also be extended to determine Ny,
since wo is now known and constamt in time. This is
achieved by projecting backwards in time to ¢t = tg, -
Eqe. (5.8), (5.8), (5.9) are then solved in much the same
way as before, the unknowns now being Nyyrm ) 4, Tunct
instead of wo, i, Tunct- Once Ny, is obtained, tr, is
determined.
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